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Abstract—The Network-on-Chip (NoC) router buffers are
instrumental in the overall operation of Chip Multi-Processors
(CMP), because they facilitate the creation of Virtual Channels
(VC). Both the NoC routing algorithm and the CMP’s cache
coherence protocol rely on the presence of VCs within the NoC
for correct functionality. In this article, we introduce a novel
concept that completely decouples the number of supported
VCs from the number of VC buffers physically present in the
design. Virtual Channel Renaming enables the virtualization of
existing virtual channels, in order to support an arbitrarily
large number of VCs. Hence, the CMP can (a) withstand the
presence of faulty VCs, and (b) accommodate routing algorithms
and/or coherence protocols with disparate VC requirements. The
proposed VC Renamer architecture incurs minimal hardware
overhead to existing NoC designs and is shown to exhibit
excellent performance without affecting the router’s critical path.

I. INTRODUCTION

The advent of Chip Multi-Processors (CMP) has accentu-
ated the criticality of the on-chip communication infrastruc-
ture, which is now tasked with the mission-critical objective
of maintaining swift and reliable inter-core communication.
Escalating numbers of on-chip processing cores necessitate
the introduction of an efficient and scalable communication
backbone. Packet-based Networks-on-Chip (NoC) [1] are en-
visioned as the most viable solution for the many-core chips
of the near future.

Among the various components comprising the on-chip
network backbone, the router buffers constitute one of the
fundamental cogs in the operation of the NoC. The buffer-
ing resources orchestrate the flow-control mechanism of the
network and facilitate the so called Virtual Channels (VC),
which enable the multiplexing of several packets onto a
single physical channel. More importantly, however, VCs
are obligatory constructs for the correct functionality of two
elemental operations within the CMP:

(a) Network Routing Computation: The vast majority of
adaptive routing algorithms developed for interconnection
networks rely on the extensive use of VCs for deadlock
avoidance and/or deadlock recovery. Existing adaptive routing
algorithms require anywhere from 2 to 16 VCs per router input
port for functional correctness [2]. While deterministic routing
algorithms (e.g., XY routing) may require only one VC,
adaptive algorithms offer much more flexibility, adaptability
to prevailing traffic conditions, and resilience to faults.

(b) Cache Coherence: The plethora of cache coherence
protocols designed for modern CMPs necessitate the use of
multiple virtual networks (realized through VCs), in order
to avoid protocol deadlocks. For instance, the well-known
MOESI protocol requires 3 virtual networks (i.e., at least 3
VCs), while other protocols require anywhere from 2 to 8
VCs per router input port [3].

Hence, virtual channels are key enablers for the seamless
functionality of both the network fabric and the cache/memory
sub-system of multi-core microprocessors.

Most existing NoC designs employ statically partitioned
VC resources. In other words, the router buffer space is
partitioned a priori at design-time (i.e., pre-manufacturing)
and the resulting NoC has a fixed number of VCs in each

router port. This characteristic raises two critical concerns
stemming from its innate inflexibility:

(1) System functionality in the event of a VC buffer/channel
malfunction – The issue of hardware reliability is becoming
increasingly relevant as technology scales deep into the nano-
scale regime [4], [5]. Defects in various locations within
the NoC may affect the functionality of VCs directly (e.g.,
buffer faults), or indirectly (e.g., arbiter faults). The NoC VCs
are so deeply intertwined with the operation of the CMP,
that a malfunction in any of the VC components may lead
to network and/or cache coherence protocol deadlocks (i.e.,
whole-system inoperability).

(2) System upgradeability with new routing algorithms,
and/or new cache coherence protocols, which require different
numbers of VCs – A major limitation with a statically par-
titioned VC implementation is the inability to accommodate
routing algorithms and cache coherence protocols that require
a different number of VCs than the specific (and fixed) number
of VCs ingrained into the CMP at design-time. The concept
of upgradeability is not merely academic. The incessant
emergence of newer and more demanding applications may
require the introduction of newer (and/or customized) routing
algorithms, in order to optimize system performance. Such
capability is currently limited by the rigid requirement of strict
compliance with the existing number of VCs in the NoC.

This pair of problematic facets in conventional VC imple-
mentations serves as the primary driver of the work presented
in this article: Re-engineering the VC operation so as to
achieve both robustness and the ability to support multiple
routing algorithms and cache coherence protocols with no
restrictions on the number of supported VCs. Toward this
end, we hereby introduce the concept of Virtual Channel
Renaming (VC Renaming). The key idea is to enable the
further virtualization of virtual channels. Through this process,
the system would allow the mapping of any number of Virtual
Virtual Channels (VVC) on top of the existing (i.e., statically
partitioned at design-time) virtual channel buffers (henceforth
called Physical Virtual Channels, or PVC). In essence, the
technique of VC Renaming facilitates the creation of an
arbitrary number of VVCs (where the Number of VVCs ≥
Number of PVCs), irrespective of the original fixed number
of PVCs built into the NoC at manufacturing.

The proposed VC Renaming technique decouples the num-
ber of VCs (now known as VVCs) required by the routing
algorithm and/or the cache coherence protocol from the actual
number of physical VCs (PVCs) originally built into the
system at design-time. The principle of VC Renaming is
inspired by the well-known architectural technique of Register
Renaming, which overcomes the restriction of a fixed number
of architectural registers within the CPU’s Instruction Set
Architecture (ISA).

The notion of virtualizing virtual channels is an innovative
idea, which, to the best of our knowledge, has not been
suggested in the literature before. Our simulation results are
very promising, and hardware synthesis using commercial 65
nm TSMC libraries demonstrates modest area/power overhead
and no impact on the router’s critical path.

The rest of the paper is organized as follows: A summary



of related work follows in Section II, while the proposed
architecture is introduced in Section III. Section IV presents
and analyzes various simulation results. Finally, Section V
concludes the paper.

II. RELATED WORK

There has been extensive research in architecting re-
configurable NoCs. However, most of this work has concen-
trated on the re-configuration of the router input ports, the
physical links, and the network topology [6]. Pertaining to the
buffers, reconfigurable NoCs mainly re-allocate buffer space
to the various ports, but do not provide any flexibility in the
structure of the VCs [7]. The work presented in this paper
can be integrated into existing reconfigurable NoC designs,
in order to provide this extra flexibility.

More relevant to our work, dynamic NoC buffer managers
aim to break the rigidity of static VC partitioning through
run-time reconfiguration. Various dynamic VC management
proposals unify the buffer resources into a common pool,
which is then managed centrally and allocated to various
VCs based on prevailing conditions [8], [9], [10], [11], [12],
[13]. Some designs can also vary the number of VCs dy-
namically at run-time [12], [13]. These techniques, however,
require a complete redesign of the input port architecture
(i.e., they are disruptive) and incur significant area/power
overhead, as a result of the complexity involved in maintaining
multi-ported unified buffer structures and/or larger crossbar
switches [10], [12], [13]. In fact, most of these techniques
were intended for off-chip communication [8], [9], [10], [11],
i.e., not as severely resource-constrained as on-chip designs.
Furthermore, these approaches are always-on: All packets are
forced to go through the unified buffer. On the contrary,
the proposed VC Renamer mechanism only requires minimal
augmentations to the existing NoC input port architectures.
No unified buffers are required and modifications are only
made to the control logic of the conventional buffers. More
importantly, the VC Renamer is disabled until it is actually
needed, because the data path is not modified.

III. THE VC RENAMER ARCHITECTURE

The VC Renamer mechanism is completely transparent to
the neighboring NoC routers. The routers are only aware of
the presence of a specific number of VVCs (those required
by the routing algorithm and/or the coherence protocol). Note
that PVC atomicity is now broken, i.e., each PVC may hold
more than one VVC. Atomicity within the individual VVCs,
however, is still maintained.

The critical issues of starvation and protocol-level dead-
locks arise whenever two or more VVCs are multiplexed
over a single PVC. If one VVC dominates the available
buffer space, other VVCs may not be left with any available
slots, leading to protocol-level deadlocks (i.e., the higher-level
protocol expects a particular message type that never arrives,
due to the above-mentioned problematic situation within a
PVC). The VC Renamer architecture ensures the absence of
such pathologies through (a) intelligent use of the credits
mechanism, which regulates flow between the PVCs, and (b)
the assumption that the number of VVCs mapped to a specific
PVC cannot exceed the number of buffer slots physically
present in the PVC. The credits mechanism will be explained
in Section III-A.

Two different VC Renamer implementations have been
developed: A Mask-Based (MB) implementation and a
Linked-List-Based (LLB) implementation. Both versions
offer the same functionality, but each is geared toward a
different objective. The MB approach is extremely lightweight
and targets fault-tolerant designs, where the VC Renamer
mechanism will only be used in input ports affected by faults.
The LLB approach incurs a slightly higher hardware overhead
and targets system upgradeability, whereby the VC Renamer
technique will be used in all routers simultaneously.

It should be noted here that both implementations do not
affect the VC Allocation (VA) or Switch Arbitration (SA)

pipeline stages of the router. Since only one of the VVCs
mapped to a particular PVC is active in any given clock
cycle, the VA and SA arbiters are completely unaffected.
This attribute is of paramount importance, since the VA and
SA stages usually determine the router’s critical path [14]. It
will be demonstrated through hardware synthesis that the VC
Renamer operates within the slack of the other pipeline stages
and does not impact the router’s critical path. Moreover, as the
VA and SA arbiters are unaffected, any arbiter prioritization
policies can still be used.

A. A Mask-Based (MB) Implementation
In a typical NoC router input port, each PVC is realized

using a k-deep FIFO buffer, where k is the maximum number
of flits (a packet comprises a number of fixed-size flits) in a
PVC, as shown in Figure 1. Said figure presents a high-level
overview of the MB architecture. FIFO order within each PVC
is maintained by head and tail pointers. These pointers are k-
deep, 1-wide, 1-hot circular registers. Assuming that the head
of the buffer is on the right-hand side (see Figure 1), the
pointers move from right to left. In the MB implementation
of the VC Renamer, each PVC maintains its generic head and
tail pointers. Two main additions are made: (1) a VVC-to-PVC
Mapping Table, and (2) a k-bit Mask for each supported VVC,
which indicates the occupied positions in the respective slots
of the PVC.

The arrival of flits is regulated by the credits mechanism.
Credits are only sent to the upstream router (i.e., the potential
sender) if a preliminary arrival test is successful. Note that
the proposed VC Renamer design assumes the use of on/off
credits, i.e., stop/go signals (for each VVC) that regulate flow
based on PVC buffer availability. Credits are sent to upstream
routers for each VVC in each input port. The credits signals
for all VVCs mapped to a specific PVC are determined by
the slot availability in said PVC; i.e., even though credits are
distributed at the VVC-level, they are determined by buffer
availability at the PVC-level. To ensure that the VVCs mapped
to a particular PVC do not receive credits simultaneously,
only credits for one VVC (per PVC) are dispatched in any
given clock cycle. Without loss of generality, the credits for
each VVC mapped to a single PVC are sent out in round-
robin fashion (one in each cycle). As will be shown later
on, this round-robin dispatch of credits has a minimal impact
on performance. If needed, the round-robin policy can be
replaced by any other policy, in order to implement different
VVC prioritization schemes.

The arrival test algorithm – which is responsible for the
credits mechanism – is shown in Algorithm 1. Step 1 of the
algorithm ensures the absence of starvation and protocol-level
deadlocks. Specifically, the two conditions of Step 1 guarantee
that each VVC mapped to a specific PVC will always have
access to at least one buffer slot. Remember that the number
of VVCs mapped to a specific PVC cannot exceed the number
of buffer slots physically present in the PVC. An “Empty”
VVC is one whose Mask contains all zeros. The conditions
of Step 1 are independent and can be fully parallelized in
hardware. In addition to this check (Step 1), a flit is only
allowed to arrive if the position pointed to by the PVC tail
pointer is to the left of the left-most ’1’ in the corresponding
VVC mask (remember, flits are assumed to fill in a VC
buffer from right to left, as shown in Figure 1). This ensures
that the flits of a particular VVC remain in order within
the PVC buffer. This critical condition is checked through
the subtraction of the VVC mask from the 1-hot PVC tail
pointer (Step 2 of Algorithm 1) and observing the sign of the
result (the left-most bit is assumed to be the most significant
bit). Credits are sent to the upstream router if the PVC tail
pointer is greater than the value of the VVC mask (positive
subtraction result) and the PVC tail pointer does not point
to an occupied position (Step 3). Since flit departures from
the various VVCs may leave the PVC buffer fragmented, the
PVC tail pointer may point to an occupied position. In such a
case, no credits are sent out in the current cycle and the PVC
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Figure 1. High-level overview of the Mask-Based (MB) implementation of
the VC Renamer. Only one input port is shown for clarity. In this example,
VVC0 and VVC1 are mapped to PVC0, while VVC2 is mapped to PVC1.
Note that one subtractor per PVC is required.

tail pointer is shifted to the left. When a flit arrives at an
input port, the VVC ID (contained within the flit) is used to
index into the VVC-to-PVC Mapping Table, which uses the
corresponding PVC ID to de-multiplex the incoming flit to
the appropriate PVC. The existing PVC tail pointer is used
to store the flit into the buffer. At the same time, the position
of the PVC tail pointer denotes the respective bit position in
the active VVC mask that must be set to ’1’. An example of
how the arrival test functions is illustrated in Figure 2.

Algorithm 1 Mask-Based Mechanism - Arrival Test
k = # of Empty VVCs mapped to current PVC
1: If {(PVC Free Slots > k) OR (Current VVC ==
Empty)} AND
2: (Tail Pointer > VVC Mask Value) AND
3: (Tail Pointer points to Free Slot) THEN
4: => VVC X Credits = ON

Algorithm 2 Mask-Based Mechanism - Departure Test
1: If (Downstream Router Credits = ON) AND
2: (Head Pointer points to Occupied Slot) AND
3: (Head Pointer > VVC Mask Value) THEN
4: => Allow Flit to Depart

In a similar manner, a flit is only allowed to depart if the
position pointed to by the PVC head pointer is the position
of the right-most ’1’ in the corresponding VVC mask. This
ensures that the flits of a particular VVC always depart the
PVC buffer in the correct order. The departure test (as shown
in Algorithm 2) is performed by doing a simple subtraction
of the VVC mask from the 1-hot PVC head pointer (Step
3) and observing the sign of the result (the right-most bit is
assumed to be the most significant bit). In the subtraction, the
bit position in the VVC mask where the PVC head pointer
points to is set to ’0’. The flit is allowed to depart if the
PVC head pointer does not point to an empty position (Step
2) and the PVC head pointer is greater than the value of the
VVC mask (Step 3, positive subtraction result). If the PVC
head pointer points to an empty position, no flit departs the
buffer and the head pointer is shifted to the left. If the flit
of one VVC cannot depart (e.g., no space in the downstream
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Figure 2. Step-by-step examples of the arrival and departure tests of the
Mask-Based (MB) implementation of the VC Renamer. Only one PVC is
shown for clarity with two VVCs (VVC0 and VVC1) mapped onto it. The
various steps correspond to Algorithms 1 and 2.

router), the PVC head pointer moves to the next position in
the following clock cycle, in order to allow other VVCs to
proceed and avoid Head-of-Line (HoL) blocking. An example
of how the departure test functions is illustrated in Figure 2.

The steps in both Algorithms 1 and 2 can be fully par-
allelized and overlapped in hardware, thus incurring minimal
latency overhead (see Section IV). More importantly, they are
off the router’s critical path (which lies in the VA/SA stages).

B. A Linked-List-Based (LLB) Implementation

As will be demonstrated in Section IV, the mask-based ap-
proach incurs a performance penalty. Hence, the Linked-List-
Based (LLB) implementation of VC Renamer targets higher
performance at the expense of a slightly higher area/power
overhead, as compared to the MB implementation. As in the
MB approach, the modifications required to realize the LLB
mechanism only affect the control logic of the existing PVC
buffers. The new components comprise: (1) a PVC Pointer
List, (2) a Free-Slot FIFO List, (3) a Front-of-VC List, (4)
a Back-of-VC List, and (5) the same VVC-to-PVC Mapping
Table of the MB implementation (see Section III-A). Figure
3 shows a high-level overview of the LLB architecture.

Assuming k-deep PVC buffers, the PVC Pointer List con-
tains one k-deep, log2 k-bit wide vector per PVC. This vector
holds the pointers to the next flit of each packet. The first
flit of each VVC mapped to a specific PVC is located by
accessing the Front-of-VC List, which is a list containing the
location (log2 k bits) of the next-departing flit of each VVC.
Once the location of the next-departing flit is known, the PVC
Pointer List points to the subsequent flits of the same packet in
a linked-list manner. Similarly, the Back-of-VC List contains
the location (log2 k bits) of the last-stored flit of each VVC. It
is used to extend the linked-list (i.e., add a new pointer) in the
PVC Pointer List whenever a new flit of an in-flight packet
arrives. The Free-Slot FIFO List maintains the free slots in
each PVC. There is one such k-deep, log2 k-bit wide FIFO
structure for each PVC in the input port. The Free-Slot FIFO
List supplies the write locations for new incoming flits.



1T 2b 2b 1B 1B 2h 1H

PVC 

ID

PVC  

ID

One Router Input Port

VC Renamer – Linked-List-Based 
Mechanism

VVC 

ID

From Free-Slot 
FIFO List

From Front-of-
VC List

Head of FIFO Buffer
PVC0

PVC1
To 

Crossbar

Mapping Table

VVC ID PVC ID

0 0

1 0

2 1

Front-of-VC List

VVC ID Position

0 0

1 1

2 -

Back-of-VC List

VVC ID Position

0 6

1 5

2 -

- - 5 6 3 4 2

1

0

PVC ID 7 6 5 4 3 2 1 0

PVC Pointer List

7

7 6 5 4 3 2 1 01

0

PVC ID 7 6 5 4 3 2 1 0

Free-Slot FIFO List

FIFO Head

1H,1B,1T  : Head, Body, Tail of VVC0
2h, 2b, 2t : Head, Body, Tail of VVC1

Figure 3. High-level overview of the Linked-List-Based (LLB) implemen-
tation of the VC Renamer. Only one input port is shown for clarity. In this
example, VVC0 and VVC1 are mapped to PVC0, while VVC2 is mapped to
PVC1.

The credits are sent to upstream routers in the same round-
robin manner as in the MB approach (see Section III-A). Un-
like the MB technique, the credits in the LLB implementation
are regulated only by the two conditions shown in Step 1 of
Algorithm 1, i.e.,

If {(PVC Free Slots > k) OR (Current VVC == Empty)}
=> VVC X Credits = ON,

where k = # of Empty VVCs mapped to current PVC.

As previously mentioned, this check ensures the absence
of starvation and protocol-level deadlocks. In this case, the
number of free slots is determined by the occupancy of the
Free-Slot FIFO List, and the number of “Empty” VVCs is
determined by the number of invalid entries in the Front-of-
VC List.

When a new flit arrives at the input port (see Algorithm 3),
the VVC ID within the flit is used to acquire the corresponding
PVC ID from the VVC-to-PVC Mapping Table. The Free-Slot
FIFO List is used to point the new flit to an available PVC slot
(Steps 1 and 2). If the Front-of-VC List entry for the particular
VVC is empty (i.e., start of new packet), it is updated with
the location granted from the Free-Slot FIFO List (Step 3).
At the same time, the corresponding Back-of-VC List entry
is updated with the new location (Step 5). If the Front-of-VC
List entry for the current VVC is not empty (i.e., the new
flit is part of an existing packet), then the Back-of-VC List is
used to index into the PVC Pointer List in order to extend the
linked-list to the PVC location of the new flit (Step 4).

Algorithm 3 Linked-List-Based Mechanism - Flit Arrival
1: Get empty slot from Free-Slot FIFO List
2: Store flit in PVC
3: If (VVC = empty) update Front-of-VC List with flit
position from Free-Slot FIFO List
4: Else use Back-of-VC List to index into the PVC Pointer
List and extend the linked-list
5: Update Back-of-VC List with new flit position

Flit departure follows a similar process (see Algorithm 4).
Once a flit is selected to depart, its VVC ID is used to acquire
the next-departing flit location from the Front-of-VC List (Step
1). This value is also enqueued within the Free-Slot FIFO List,
since the location will be vacated (Step 3). If the departing flit

Algorithm 4 Linked-List-Based Mechanism - Flit Departure
1: Acquire new Head Pointer from the Front-of-VC List
2: Allow flit to depart if credits are available
3: Push the head pointer value to the Free-Slot FIFO List
4: If (flit = tail flit) invalidate Front-of-VC List and Back-
of-VC List entries
5: Else use the Head Pointer value to index into the PVC
Pointer List and update Front-of-VC List with acquired
value
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Figure 4. Step-by-step examples of the arrival and departure mechanisms
of the Linked-List-Based (LLB) implementation of the VC Renamer. Only
one PVC is shown for clarity with two VVCs (VVC0 and VVC1) mapped
onto it. The various steps correspond to Algorithms 3 and 4.

is a tail flit (i.e., the end of a packet), the corresponding entries
in the Front-of-VC List and the Back-of-VC List are invalidated
(Step 4, indicating an empty VVC). If the departing flit is not
the last flit of its packet, then the Front-of-VC List is used to
index into the PVC Pointer List. The indexed value within the
PVC Pointer List points to the PVC location of the next flit of
the same packet. This value is used to update the Front-of-VC
List; i.e., the location of the next flit of the same packet now
becomes the new head of the VVC (Step 5).

An example of how the arrival and departure mechanisms



function is illustrated in Figure 4. Again, the steps in both
Algorithms 3 and 4 can be fully parallelized and overlapped
in hardware, and they are off the router’s critical path (see
Section IV).

IV. SIMULATION RESULTS

A. Simulation Platform
Both incarnations of VC Renamer were implemented within

a cycle-accurate NoC simulator. The simulations assume
wormhole switching, 4-stage pipelined routers, and deter-
ministic XY routing. Each router consists of five physical
ports, each with four, 8-deep PVCs. Every simulation runs for
1,000,000 clock cycles and each packet consists of five 32-bit
flits. Our evaluation utilizes (a) synthetic Uniform Random
(UR) traffic patterns in an 8× 8 2D MESH network, and (b)
traces from real applications running on the TRIPS [15] NoC-
based multicore processor. The TRIPS processor includes a
4× 10 mesh On-Chip Network (OCN) [15], which uses XY
routing and 4 VCs per input port. We use traces extracted
from 11 representative benchmarks of the SPEC CPU2000
Suite running on the TRIPS cycle-accurate simulator.

The spatial distribution of VC faults in the system is
inspired by the model in [16]. A VC fault is assumed to
disable one PVC of an input port. We explore two distributions
of spatial VC fault placement: (1) Random (RM), where VC
faults are uniform-randomly distributed throughout the NoC,
and (2) Hotspot (HS), where VC faults are distributed only
within a group of spatially correlated routers. In order to as-
sess the robustness of VC Renamer, we vary the percentage of
faulty VCs in the whole NoC from 1 to 10%. Each simulation
was repeated 50 times and the results were averaged.

Finally, in order to evaluate the hardware cost (area and
power overhead) of the proposed mechanisms, a conventional
NoC router and both VC Renamer architectures were imple-
mented in Verilog and synthesized in Synopsys Design Com-
piler using 65 nm commercial TSMC standard-cell libraries.

B. Analysis Of Results
We begin our evaluation with synthetic traffic patterns. We

initially set the VC fault rate to 5% to see how VC Renamer
fares as the traffic injection rate is varied. Each input port
(in all designs) has four, 8-deep PVCs. We assume that the
generic NoC design has spare VC buffers in every router input
port to deal with VC faults. This, of course, amounts to an
enormous overhead, which VC Renamer aims to eliminate by
not relying on spare buffers at all. A fault in the MB and
LLB designs is assumed to disable one of the 4 PVCs of
an input port, thus forcing two VVCs to be mapped to one
of the remaining 3 PVCs. Figure 5(a) assumes RM spatial
fault distribution and compares the attained average network
latency of VC Renamer to a generic NoC that is unaffected
by the faults, because of the spare buffers (i.e., ideal scenario
with immunity to faults). The MB and LLB implementations
experience only 4.47% and 2.74% average drops in perfor-
mance, respectively. Throughput decreases by only 4.96% and
0.52%, respectively. Similar trends are observed in Figure
5(b), which assumes HS fault distribution. The MB approach
exhibits worse performance, because some cycles are skipped
(i.e., nothing happens) during operation, as a result of the Step
2 condition check of Algorithm 1 and Step 3 of Algorithm 2.

The traffic injection rate is then set at 0.2 flits/node/cycle
(in-between the zero-load and onset-of-saturation rates) and
the VC fault rate is varied. Figures 5(c) and 5(d) illustrate
the results assuming RM and HS spatial fault distributions,
respectively. Note that the “Generic” latency in these figures
is constant, since the generic design is unaffected by faults
(ideal). Clearly, at low VC fault rates, the drop in performance
is almost imperceptible with VC Renamer (as compared to an
ideal design unaffected by faults). Even with 10% faulty VCs,
the MB and LLB techniques experience modest 5.37% and
3.45% average drops in performance (over both spatial fault
distributions), respectively.

Table I
HARDWARE SYNTHESIS RESULTS (65 NM): VC RENAMER OVERHEAD

OVER A GENERIC NOC ROUTER IMPLEMENTATION

% Area Overhead % Power Overhead
# of VVCs per PVC 2 3 4 2 3 4

Mask-Based 2.09 2.87 5.36 0.23 2.33 3.71
Linked-List-Based 7.71 8.89 11.37 1.51 3.04 4.67

Figure 5(e) summarizes results of trace-driven simulations
of real applications running on the TRIPS processor. A VC
fault rate of 5% and RM spatial fault distribution are assumed.
On average, the MB and LLB implementations experience
6.11% and 1.80% decreases in performance, respectively, as
compared to the ideal, fault-free setting. Clearly, both tech-
niques are suitable for fault-tolerant designs. If area/power
overhead is an issue, the MB approach may be preferable,
due to its lower overhead, as will be described shortly.

In order to assess the upgradeability aptitude of VC Re-
namer, we run the TRIPS [15] traces – which require 4
VCs/port – in a network with only 3 PVCs/port. Hence, VC
Renamer is active in all router input ports in the entire NoC.
Figure 5(f) shows comparison results with a generic NoC
with 4 PVCs/port (ideal). For fairness, all designs have the
same total number of buffer slots (e.g., equal buffer space)
per input port. While the MB implementation experiences a
15.52% average drop in performance (because of excessive
cycle skips attributed to the condition checks of Algorithms
1 and 2), the LLB implementation only suffers a 1.95%
average decline. Clearly, the LLB technique is more suitable
for upgradeability purposes, due to its minimal impact on
performance, even when used in all routers simultaneously.

Table I shows the percentage area/power overhead of VC
Renamer over a generic NoC design, as the number of mapped
VVCs per PVC is varied. For example, if 2 VVCs are mapped
per PVC, the number of supported VVCs is double that of
the existing PVCs. For doubling the number of supported
VCs (i.e., a huge flexibility boost), the MB implementation
incurs minimal area and power overhead of 2.09% and 0.23%,
respectively, while the LLB technique incurs area and power
overhead of 7.71% and 1.51%, respectively. More importantly,
our synthesis results also showed that the critical path of the
router was not affected by either of the two VC Renamer ar-
chitectures. The critical path still lies within the VC Allocation
(VA) stage, which is untouched by VC Renamer (remember,
VC Renamer simply changes the mapping of VVCs to PVCs;
it does not interfere with the operation of the arbiters). All the
new logic operates within the slack of the crossbar traversal
and link-traversal/buffer-write stages.

As mentioned at the end of Section III-A, the VC Renamer
employs a round-robin credit dispatch mechanism for the
VVCs mapped to a particular PVC. This mechanism sends
credits to each of the VVCs on a cycle-by-cycle basis.
Figure 6 analyzes the impact of this mechanism on average
network latency, as compared to an ideal credit mechanism
that dispatches credits to all VVCs simultaneously and only a
VVC that could make use of the credits actually uses them. It
can be seen that the lightweight round-robin mechanism has
negligible impact of 0.7% on performance when 2 VVCs are
mapped to each PVC. For 3 VVCs/PVC, the latency increases
by 2.7%, and for 4 VVCs/PVC it increases by 6.9%. Note,
however, that at 2 VVCs/PVC, the number of supported VVCs
already doubles. Hence, the credit mechanism has almost no
impact on performance with this configuration.

V. CONCLUSION

Virtual channels are quintessential constructs in the correct
operation of both the NoC routing algorithm and the CMP’s
cache coherence protocol. This paper introduces the notion
of VC Renaming, which enables the further virtualization
of existing VC buffers, in order to decouple the number of
supported VCs in the system from the number of physically
present VC buffers. The goals are (a) to enable the system
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(a) VC fault rate: 5%, RM spatial fault distribution,
UR synthetic traffic
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(c) Injection Rate: 0.2 flits/node/cycle, RM spatial
fault distribution, UR synthetic traffic
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(d) Injection Rate: 0.2 flits/node/cycle, HS spatial
fault distribution, UR synthetic traffic
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(e) VC fault rate: 5%, RM spatial fault distribution,
Traces from real applications
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(f) Assessing the upgradeability of VC Renamer; 4
VVCs are facilitated on 3 PVCs

Figure 5. Simulation results using both synthetic traffic patterns and traces from real application workloads. RM: Random, HS: Hotspot, UR: Uniform
Random.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Average
0.95

1

1.05

1.1

1.15

N
o
rm

a
liz

e
d
 A

v
. 

N
e
tw

o
rk

 L
a
te

n
c
y

Injection Rate (flits/node/cycle)

2 VVCs per PVC

3 VVCs per PVC

4 VVCs per PVC

Figure 6. Comparison of average network latency achieved using the
proposed round-robin (cycle-by-cycle) credit mechanism, as compared to an
ideal mechanism that distributes credits simultaneously to all VVCs mapped
to a particular PVC. The impact of the mechanism is assessed as the number
of VVCs mapped to a PVC increases from 2 to 4. All results are normalized
to the setup with an ideal credit mechanism.

to tolerate faulty VCs without reliance on expensive spare
buffers, and (b) to accommodate routing algorithms and/or
cache coherence protocols with varying VC requirements.
Two different hardware implementations of the VC Renamer
architecture are presented, which target different objectives
(fault-tolerance vs. upgradeability). Both designs incur min-
imal hardware overhead and exhibit excellent performance
without impacting the router’s critical path. These results are
very promising and demonstrate the viability of VC Renaming
in future CMPs.

ACKNOWLEDGEMENT

This work falls under the Cyprus Research Promotion
Foundation’s Framework Programme for Research, Techno-
logical Development and Innovation 2009-10 (DESMI 2009-
10), co-funded by the Republic of Cyprus and the Euro-
pean Regional Development Fund, and specifically under
Grant TΠE/ΠΛHPO/0609(BIE)/09. The research leading to
this paper is also supported by the European Commission
FP7 project “Energy-conscious 3D Server-on-Chip for Green
Cloud Services” (Project No:247779 “EuroCloud”).

REFERENCES

[1] W.J. Dally and B. Towles, “Route packets, not wires:
on-chip interconnection networks,” In Proceedings of
DAC, 2001.

[2] J. Duato, S. Yalamanchili, and L.M. Ni, “Intercon-
nection Networks: An Engineering Approach,” IEEE
Computer Society Press, 1st Ed., 1997.

[3] N. Agarwal, L.S. Peh, and N.K. Jha, “In-Network Snoop
Ordering (INSO): Snoopy coherence on unordered inter-
connects,” In Proceedings of HPCA, 2009.

[4] S. Borkar, “Designing reliable systems from unreliable
components: the challenges of transistor variability and
degradation,” In IEEE Micro, Nov-Dec 2005.

[5] S.R. Nassif, N. Mehta, and Y. Cao, “A resilience
roadmap,” In Proceedings of DATE, 2010.

[6] M. Modarressi, H. Sarbazi-Azad, and A. Tavakkol, “An
efficient dynamically reconfigurable on-chip network
architecture,” In Proceedings of DAC, 2010.

[7] M.A.A. Faruque, T. Ebi, and J. Henkel, “Configurable
links for runtime adaptive on-chip communication,” In
Proceedings of DATE, 2009.

[8] Y. Tamir and G.L. Frazier, “High-performance multi-
queue buffers for VLSI communications switches,” In
Proceedings of ISCA, 1988.

[9] J. Park et al., “Design and evaluation of a DAMQ
multiprocessor network with self-compacting buffer,” In
Proceedings of Supercomputing, 1994.

[10] N. Ni, M. Pirvu, and L. Bhuyan, “Circular buffered
switch design with wormhole routing and virtual chan-
nels,” In Proceedings of ICCD, 1998.

[11] Y. Choi and T. M. Pinkston, “Evaluation of queue
designs for true fully adaptive routers,” In Journal of
Parallel and Distributed Computing, 2004.

[12] C.A. Nicopoulos et al., “ViChaR: A Dynamic Virtual
Channel Regulator for Network-on-Chip Routers,” In
Proceedings of MICRO, 2006.

[13] M. Lai et al., “A dynamically-allocated virtual chan-
nel architecture with congestion awareness for on-chip
routers,” In Proceedings of DAC, 2008.

[14] J. Kim, “Low-cost router microarchitecture for on-chip
networks,” In Proceedings of MICRO, 2009.

[15] K. Sankaralingam et al., “Distributed Microarchitectural
Protocols in the TRIPS Prototype Processor,” In Pro-
ceedings of MICRO, 2006.

[16] A. Agarwal, D. Blaauw, and V. Zolotov, “Statistical
timing analysis for intra-die process variations with
spatial correlations,” In Proceedings of ICCAD, 2003.


