
Virtualizing Virtual Channels for
Increased Network-on-Chip
Robustness and Reliability

Marios Evripidou

Department of Electrical and Computer Engineering

University of Cyprus

A thesis submitted for the degree of

Master of Science (MSc) in Computer Engineering

2011 December

mailto:mariosevr@gmail.com
http://www.ece.ucy.ac.cy
http://www.ucy.ac.cy

Committee Members:

Chrysostomos Nicopoulos
Lecturer, Department of ECE, Advisor

Maria K. Michael
Assistant Professor, Department of ECE

Theocharis Theocharides
Assistant Professor, Department of ECE

Date of the defence: 8th of December 2011

ii

Abstract

The Network-on-Chip (NoC) router buffers are instrumental in the over-
all operation of Chip Multi-Processors (CMP), because they facilitate the
creation of Virtual Channels (VC). Both the NoC routing algorithm and
the CMPs cache coherence protocol rely on the presence of VCs within the
NoC for correct functionality. The router buffer space is partitioned a priori
at design-time and the resulting NoC has a fixed number of VCs in each
router port. This characteristic raises two critical concerns stemming from
its innate inflexibility: (1) System functionality in the event of a VC buffer-
/channel malfunction: a malfunction in any of the VC components may
lead to network and/or cache coherence protocol deadlocks. (2) System
upgradeability with new routing algorithms, and/or new cache coherence
protocols, which require different numbers of VCs: Statically partitioned
VC implementations cannot accommodate routing algorithms and cache
coherence protocols that require different number of VCs.

This pair of problematic facets in conventional VC implementations serves
as the primary driver of the work presented in this thesis: Re-engineering
the VC operation so as to achieve both robustness and the ability to support
multiple routing algorithms and cache coherence protocols with no restric-
tions on the number of supported VCs. The key idea is to enable the further
virtualization of virtual channels. Through this process, the system would
allow the mapping of any number of Virtual Virtual Channels (VVC) on top
of the existing virtual channel buffers (Physical Virtual Channels, or PVC).
The proposed technique (Virtual Channel Renaming - VC Renaming) de-
couples the number of VCs (now known as VVCs) required by the routing
algorithm and/or the cache coherence protocol from the actual number of
physical VCs (PVCs) originally built into the system at design-time. The
notion of virtualizing virtual channels is an innovative idea, which, to the
best of our knowledge, has not been suggested in the literature before. Our
simulation results are very promising, and hardware synthesis using com-
mercial 65 nm TSMC libraries demonstrates modest area/power overhead
and no impact on the routers critical path.

To my family and friends

Acknowledgements

Foremost, I would like to express my sincere gratitude to my advisor Prof.
Chrysostomos Nicopoulos for the continuous support during my MSc study
and research, for his patience, motivation, enthusiasm, and immense knowl-
edge. His guidance helped me in all the time of research and writing of this
thesis. I could not have imagined having a better advisor and mentor for
my MSc study. I would also like to thank Prof. Vassos Soteriou for his
valuable contribution in the early stages of this project and his continuous
assistance during the development of this work.

I would also like to thank my friends for sticking by me all these years and
always reminding me that some things are much more precious than others.
Without them I wouldn’t be who I am today.

Last but not the least, I would like to thank my family for raising me and
giving me the values I uphold through life, for always believing in me and
supporting me spiritually throughout my life.

vi

Contents

List of Figures ix

1 Introduction 1

2 Networks-on-Chip - Related Work 5

2.1 Networks-on-Chip . 5

2.1.1 Networks-on-Chip Components 7

2.1.2 Communication Overview . 9

2.1.3 Communication Structures . 11

2.1.4 A Virtual Channel Router . 14

2.2 Related Work . 16

2.2.1 NoC Buffers . 16

2.2.2 Fault Tolerance . 18

2.2.3 Re-Configurable NoCs . 19

2.3 POP Net - A high-level cycle-accurate NoC Simulator 19

3 VC Renamer High-Level Architecture 21

3.1 Mask-Based High-Level Architecture . 22

3.2 Linked-List Based High-Level Architecture 26

4 VC Renamer - Mask-Based Implementation 31

4.1 Implementation in High-Level Simulator 31

4.2 Implementation in HDL Language . 35

5 VC Renamer - Linked-List-Based Implementation 43

5.1 Implementation in High-Level Simulator 43

5.2 Implementation in HDL Language . 45

6 Simulations - Results Analysis 57

6.1 Simulation Platform . 57

6.2 Results Analysis . 58

6.2.1 Fault Tolerance Scenarios . 58

6.2.2 Upgradability Scenarios . 58

6.2.3 Hardware Cost Comparison . 63

vii

CONTENTS

6.2.4 Credit Mechanism . 65

7 Future Work - Conclusions 69
7.1 Future Work . 69

7.1.1 Handling Dynamic Faults . 69
7.1.2 Mapping one VVC across multiple PVCs 74
7.1.3 Exploration of the performance of VC Renamer using various

routing algorithms . 74
7.2 Conclusions . 74

A POP Net - A high-level cycle-accurate NoC Simulator 75
A.1 Front-end Router Component . 75
A.2 Back-end Router Component . 76
A.3 Router Pipeline . 77
A.4 Message Passing . 78
A.5 Command Line Options . 78

B VC Renamer - MB Flow Diagrams 81

C VC Renamer - LLB Flow Diagrams 93

Bibliography 103

viii

List of Figures

2.1 High-level overview of an on-chip network 6

2.2 A detailed router block diagram . 8

2.3 Deadlock Scenario - The red lines designate a deadlock when multiple
flits wait for interdependent resources to be released for progressing with-
out being able to escape . 11

2.4 NoC Network topologies . 12

2.5 A typical NoC crossbar - The tri-state buffers are controlled by the rout-
ing hardware, and connect a given input port to the desired output port 13

2.6 Generic Architecture of a Virtual Channel Router 15

2.7 Virtual Channel Fault - Under XY deterministic routing with one VC a
VC malfunction renders the NoC inoperable 16

2.8 Virtual Channel Fault - Under XY deterministic routing with two VCs
in a cache-coherence protocol where VC0 is used for requests and VC1
for replies a VC malfunction renders the NoC inoperable 17

3.1 High-level overview of the Mask-Based (MB) implementation of the VC
Renamer. Only one input port is shown for clarity. In this example,
VVC0 and VVC1 are mapped to PVC0, while VVC2 is mapped to PVC1.
Note that one subtractor per PVC is required. 24

3.2 Step-by-step examples of the arrival and departure tests of the Mask-
Based (MB) implementation of the VC Renamer. Only one PVC is
shown for clarity with two VVCs (VVC0 and VVC1) mapped onto it.
The various steps correspond to Algorithms 1 and 2. 25

3.3 High-level overview of the Linked-List-Based (LLB) implementation of
the VC Renamer. Only one input port is shown for clarity. In this
example, VVC0 and VVC1 are mapped to PVC0, while VVC2 is mapped
to PVC1. 27

3.4 Step-by-step examples of the arrival and departure mechanisms of the
Linked-List-Based (LLB) implementation of the VC Renamer. Only one
PVC is shown for clarity with two VVCs (VVC0 and VVC1) mapped
onto it. The various steps correspond to Algorithms 3 and 4. 29

ix

LIST OF FIGURES

4.1 Mask-Based Storage Cost - Cost of the Mask-Based Implementation
compared to a Generic NoC Router as the number of mapped VVCs
increases . 35

4.2 Mask-Based Hardware Architecture . 37

4.3 Mask-Based Hardware Architecture - Flit Arrival 38

4.4 Mask-Based Hardware Architecture - Flit Departure 39

4.5 Mask-Based Hardware Architecture - Credit Mechanism 40

5.1 Linked-List-Based Storage Cost - Cost of the Linked-List-Based Imple-
mentation compared to a Generic NoC Router as the number of mapped
VVCs increases . 46

5.2 Linked-List-Based Hardware Architecture: figure shows the hardware
needed in order to create a port with 2 PVCs and 2 mapped VVCs on
each PVC. 49

5.3 Linked-List-Based Hardware Architecture - Flit Arrival - Step 1: Acquire
new tail pointer from Free-Slot-FIFO List 50

5.4 Linked-List-Based Hardware Architecture - Flit Arrival - Step 2: Store
flit in the correct PVC . 51

5.5 Linked-List-Based Hardware Architecture - Flit Arrival - Step 3: Update
PVC IDs List using Back-of-VC-List Poistion 52

5.6 Linked-List-Based Hardware Architecture - Flit Arrival - Step 4: Update
Back-of-VC List using Tail Pointer. If flit=head flit update Front-of-VC
List using Tail Pointer . 53

5.7 Linked-List-Based Hardware Architecture - Flit Departure - Step 1: Ac-
quire new head pointer from Front-of-VC List 54

5.8 Linked-List-Based Hardware Architecture - Flit Departure - Step 2: Al-
low flit to depart from the correct PVC and push head pointer position
to Free Slot Fiflo List . 55

5.9 Linked-List-Based Hardware Architecture - Flit Departure - Step 3: If
flit = tail flit invalidate Back and Front of VC List entries, else update
Front-of-VC List entry by referencing the PVC IDs List 56

6.1 VC fault rate: 5%, RM spatial fault distribution, UR synthetic traffic . 59

6.2 VC fault rate: 5%, RM spatial fault distribution, UR synthetic traffic . 59

6.3 VC fault rate: 5%, HS spatial fault distribution, UR synthetic traffic . . 59

6.4 VC fault rate: 5%, HS spatial fault distribution, UR synthetic traffic . . 60

6.5 Injection Rate: 0.2 flits/node/cycle, RM spatial fault distribution, UR
synthetic traffic . 60

6.6 Injection Rate: 0.2 flits/node/cycle, HS spatial fault distribution, UR
synthetic traffic . 60

6.7 VC fault rate: 5%, RM spatial fault distribution, Traces from real ap-
plications . 61

6.8 Upgradeability Scenario 1 - Latency: Generic:6 6-slot VCs - VC Renamer:
6 VVCs facilitated on 4 9-slot PVCs . 62

x

LIST OF FIGURES

6.9 Upgradeability Scenario 1 - Throughput : Generic:6 6-slot VCs - VC
Renamer: 6 VVCs facilitated on 4 9-slot PVCs 62

6.10 Upgradeability Scenario 2 - Latency: Generic:6 10-slot VCs - VC Re-
namer: 6 VVCs facilitated on 5 12-slot PVCs 63

6.11 Upgradeability Scenario 2 - Latency: Generic:6 10-slot VCs - VC Re-
namer: 6 VVCs facilitated on 5 12-slot PVCs 63

6.12 Upgradeability Scenario 3 - Latency: Generic:8 6-slot VCs - VC Renamer:
8 VVCs facilitated on 6 8-slot PVCs . 64

6.13 Upgradeability Scenario 3 - Latency: Generic:8 6-slot VCs - VC Renamer:
8 VVCs facilitated on 6 8-slot PVCs . 64

6.14 Upgradeability Scenario 4 - Latency:Generic:4 6-slot VCs - VC Renamer:
4 VVCs facilitated on 3 8-slot PVCs . 65

6.15 Hardware Synthesis: VC Renamer implementations area overhead com-
pared to a generic NoC router . 66

6.16 Hardware Synthesis: VC Renamer implementations power overhead com-
pared to a generic NoC router . 66

6.17 Comparison of average network latency achieved using the proposed
round-robin (cycle-by-cycle) credit mechanism, as compared to an ideal
mechanism that distributes credits simultaneously to all VVCs mapped
to a particular PVC. The impact of the mechanism is assessed as the
number of VVCs mapped to a PVC increases from 2 to 4. All results
are normalized to the setup with an ideal credit mechanism. 67

7.1 Generic NoC Architecture augmented to handle dynamic faults 70

7.2 VC Renamer Mask-Based Architecture augmented to handle dynamic
faults . 71

7.3 VC Renamer Linked-List-Based Architecture augmented to handle dy-
namic faults . 72

7.4 Dynamic Faults Scenario - Latency: Comparison of a Generic NoC, a
Generic NoC augmented to handle dynamic faults and the VC Renamer
mechanism under 5% dynamic faults . 73

7.5 Dynamic Faults Scenario - Throughput: Comparison of a Generic NoC, a
Generic NoC augmented to handle dynamic faults and the VC Renamer
mechanism under 5% dynamic faults . 73

B.1 Mask-Based Architecture Flow Chart - Incoming Flits: The basic steps
of the VC Renamer Algorithm needed when a flit arrives at an input port. 82

B.2 Mask-Based Architecture Flow Chart - Router Pipeline - Stage 1: Rout-
ing Decision: The basic steps of the VC Renamer Algorithm needed
during the Routing Computation Stage. 83

B.3 Mask-Based Architecture Flow Chart - Router Pipeline - Stage 2: VC
Arbitration - VA1: the basic steps of the VC Renamer Algorithm needed
during the VA1 Stage. 84

xi

LIST OF FIGURES

B.4 Mask-Based Architecture Flow Chart - Router Pipeline - Stage 2: VC
Arbitration - VA2: the basic steps of the VC Renamer Algorithm needed
during the VA2 Stage. 85

B.5 Mask-Based Architecture Flow Chart - Router Pipeline - Stage 3: Switch
Arbitration - SA1: the basic steps of the VC Renamer Algorithm needed
during the SA1 Stage. 86

B.6 Mask-Based Architecture Flow Chart - Router Pipeline - Stage 3: Switch
Arbitration - SA2: the basic steps of the VC Renamer Algorithm needed
during the SA2 Stage. 87

B.7 Mask-Based Architecture Flow Chart - Router Pipeline - Stage 4: Flit
Outbuffer: the basic steps of the VC Renamer Algorithm needed when
a flit is selected to depart from an input port 88

B.8 Mask-Based Architecture Flow Chart - Router Pipeline - Stage 5: Flit
Traversal: the basic steps of the VC Renamer Algorithm needed when a
flit travels towards the downstream router 89

B.9 Mask-Based Architecture Flow Chart - Credit Mechanism: the basic
steps of the VC Renamer Algorithm needed when sending out ON-OFF
credit messages . 90

B.10 Mask-Based Architecture Flow Chart - End of router pipeline tasks:
the basic steps of the VC Renamer Algorithm needed when the router
pipeline ends . 91

C.1 Linked-List-Based Architecture Flow Chart - Incoming Flits: The basic
steps of the VC Renamer Algorithm needed when a flit arrives at an
input port. 94

C.2 Linked-List-Based Architecture Flow Chart - Router Pipeline - Stage 1:
Routing Decision: The basic steps of the VC Renamer Algorithm needed
during the Routing Computation Stage. 95

C.3 Linked-List-Based Architecture Flow Chart - Router Pipeline - Stage 2:
VC Arbitration - VA1: the basic steps of the VC Renamer Algorithm
needed during the VA1 Stage. 96

C.4 Linked-List-Based Architecture Flow Chart - Router Pipeline - Stage 2:
VC Arbitration - VA2: the basic steps of the VC Renamer Algorithm
needed during the VA2 Stage. 97

C.5 Linked-List-Based Architecture Flow Chart - Router Pipeline - Stage 3:
Switch Arbitration - SA1: the basic steps of the VC Renamer Algorithm
needed during the SA1 Stage. 98

C.6 Linked-List-Based Architecture Flow Chart - Router Pipeline - Stage 3:
Switch Arbitration - SA2: the basic steps of the VC Renamer Algorithm
needed during the SA2 Stage. 99

C.7 Linked-List-Based Architecture Flow Chart - Router Pipeline - Stage 4:
Flit Outbuffer: the basic steps of the VC Renamer Algorithm needed
when a flit is selected to depart from an input port 100

xii

LIST OF FIGURES

C.8 Linked-List-Based Architecture Flow Chart - Router Pipeline - Stage 5:
Flit Traversal: the basic steps of the VC Renamer Algorithm needed
when a flit travels towards the downstream router 101

C.9 Linked-List-Based Architecture Flow Chart - Credit Mechanism: the
basic steps of the VC Renamer Algorithm needed when sending out ON-
OFF credit messages . 102

xiii

LIST OF FIGURES

xiv

1

Introduction

The advent of Chip Multi-Processors (CMPs) has accentuated the criticality of the
on-chip communication infrastructure, which is now tasked with the mission-critical
objective of maintaining swift and reliable inter-core communication. Escalating num-
bers of on-chip processing cores necessitate the introduction of an efficient and scalable
communication backbone. Packet-based Networks-on-Chip (NoC)(2, 3, 4, 5) are envi-
sioned as the most viable solution for the many-core chips of the near future.

Among the various components comprising the on-chip network backbone, the
router buffers constitute one of the fundamental cogs in the operation of the Networks-
on-Chip. The buffering resources orchestrate the flow-control mechanism of the network
and facilitate the so called Virtual Channels (VCs), which enable the multiplexing of
several packets onto a single physical channel. More importantly, however, virtual chan-
nels are obligatory constructs for the correct functionality of two elemental operations
within the Chip Multi-Processors:

(a) Network Routing Computation: The vast majority of adaptive routing
algorithms developed for interconnection networks rely on the extensive use of Virtual
Channels for deadlock avoidance and/or deadlock recovery. Existing adaptive routing
algorithms require anywhere from 2 to 16 virtual channels per router input port for
functional correctness (6). While deterministic routing algorithms (e.g., XY routing)
may require only one virtual channel, adaptive algorithms offer much more flexibility,
adaptability to prevailing traffic conditions, and resilience to faults.

(b) Cache Coherence: The plethora of cache coherence protocols designed for
modern Chip Multi-Processors necessitate the use of multiple virtual networks (realized
through virtual channels), in order to avoid protocol deadlocks. For instance, the well-
known MOESI protocol requires 3 virtual networks (i.e., at least 3 Virtual Channels),
while other protocols require anywhere from 2 to 8 virtual channels per router input
port (7).

Hence, virtual channels are key enablers for the seamless functionality of both the
network fabric and the cache/memory sub-system of multi-core microprocessors.

Most existing Networks-on-Chip designs employ statically partitioned virtual chan-
nel resources. In other words, the router buffer space is partitioned a priori at design-

1

1. INTRODUCTION

time (i.e., pre-manufacturing) and the resulting Networks-on-Chip has a fixed number
of virtual channels in each router port. This characteristic raises two critical concerns
stemming from its innate inflexibility:

(1) System functionality in the event of a virtual channel buffer/channel
malfunction – The issue of hardware reliability is becoming increasingly relevant as
technology scales deep into the nano-scale regime (8, 9). In general, faults (permanent,
intermittent, and transient) may occur anywhere on the chip and may affect any sys-
tem component. Defects in various locations within the Networks-on-Chip may affect
the functionality of virtual channels directly (e.g., buffer faults), or indirectly (e.g.,
arbiter faults). The Network-on-Chip virtual channels are so deeply intertwined with
the operation of the Chip Multi-Processors, that a malfunction in any of the virtual
channel components may lead to network and/or cache coherence protocol deadlocks
(i.e., whole-system inoperability).

(2) System upgradeability with new routing algorithms, and/or new
cache coherence protocols, which require different numbers of virtual chan-
nels – A major limitation with a statically partitioned virtual channel implementation
is the inability to accommodate routing algorithms and cache coherence protocols that
require a different number of virtual channels than the specific (and fixed) number of
virtual channels ingrained into the Chip Multi-Processor at design-time. The concept
of upgradeability is not merely academic. The incessant emergence of newer and more
demanding applications may require the introduction of newer (and/or customized)
routing algorithms, in order to optimize system performance. Such capability is cur-
rently limited by the rigid requirement of strict compliance with the existing number
of virtual channels in the Networks-on-Chip.

This pair of problematic facets in conventional virtual channel implementations
serves as the primary driver of the work presented in this thesis: Re-engineering
the virtual channel operation so as to achieve both robustness and the ability
to support multiple routing algorithms and cache coherence protocols with
no restrictions on the number of supported virtual channels. Toward this end, we
hereby introduce the concept of Virtual Channel Renaming (VC Renaming).
The key idea is to enable the further virtualization of virtual channels. Through
this process, the system would allow the mapping of any number of Virtual Virtual
Channels (VVCs) on top of the existing (i.e., statically partitioned at design-time)
virtual channel buffers (henceforth called Physical Virtual Channels, or PVCs). In
essence, the technique of VC Renaming facilitates the creation of an arbitrary number
of Virtual Virtual Channels (where the Number of Virtual Virtual Channels ≥ Number
of Physical Virtual Channels), irrespective of the original fixed number of physical
virtual channels built into the Networks-on-Chip at manufacturing.

For example, suppose the Networks-on-Chip of a multi-core microprocessor is im-
plemented with 3 virtual channels (i.e., Number of physical virtual channels = 3) per
router input port. If one of the virtual channel buffers in any router’s input port mal-
functions, the VC Renaming engine will map the affected virtual channel onto one of
the remaining 2 (fully-functioning) physical virtual channels. Similarly, if a new routing

2

algorithm is to be used, which requires 4 virtual channels per input port, an additional
virtual virtual channel will be mapped onto one of the 3 physical virtual channels, so
that a total of 4 virtual virtual channels will be served by the existing 3 physical virtual
channels.

The proposed VC Renaming technique decouples the number of virtual channels
(now known as virtual virtual channels) required by the routing algorithm and/or the
cache coherence protocol from the actual number of physical virtual channels (PVCs)
originally built into the system at design-time. The mechanism is completely trans-
parent to the neighboring Networks-on-Chip routers: the routers are only aware of the
presence of a specific number of virtual virtual channels (those required by the routing
algorithm and/or the coherence protocol). A disabled phyrical virtual channel in one
router will not become visible to the neighbors; VC Renaming will hide the anomaly
by remapping the affected virtual virtual channel onto a different physical virtual chan-
nel. System functionality will be fully maintained, albeit at a degraded performance.
The principle of VC Renaming is inspired by the well-known architectural technique of
Register Renaming, which overcomes the restriction of a fixed number of architectural
registers within the CPU’s Instruction Set Architecture (ISA). (10, 11) However, while
in Register Renaming the mapping is from a number of architectural registers to a
LARGER number of physical registers (few-to-many), in VC Renaming the reverse is
true: mapping is performed from a number of Virtual Virtual Channels – required by
system semantics – to a SMALLER number of Physical Virtual Channels (many-to-
few).

The notion of virtualizing virtual channels is an innovative idea, which, to the
best of our knowledge, has not been suggested in the literature before. Our sim-
ulation results are very promising, and hardware synthesis using commercial
65 nm TSMC libraries demonstrates modest area/power overhead and no impact
on the router’s critical path.

The rest of this thesis is structured as follows. Chapter 2 begins with an introduction
of the Network-On-Chip premise and the architecture of a generic Networks-on-Chip
Router. It follows with an analysis of relative work on Networks-on-Chip Buffers, fault
tolerant architectures and reconfigurable Networks-on-Chips and then describes the
Networks-on-Chip Cycle Accurate Simulator we modified to perform our simulations.
In Chapter 3 VC Renamer is thoroughly explained and the high-level architectures of
the two VC Renamer implementations is presented. Chapters 4 and 5 analyze the high-
level implementations of the Mask-Based and Linked-List-Based implementations of VC
Renamer in the high-level simulator as well as the hardware implementations in an HDL
language. In Chapter 6 the simulation framework is presented and a concise analysis
of the results for fault-tolerant and upgradability scenarios are depicted. Chapter 7
concludes this thesis and offers a brief description for the future work on VC Renamer.

3

1. INTRODUCTION

4

2

Networks-on-Chip - Related
Work

The multi-core era is dominating the processor domain with quad-core processors avail-
able even to the general consumer. As the size of the cores increases, the importance of
the interconnection backbone is stressed and needs to find ways in order to be efficient
in terms of flexibility, scalability and performance. The packet-based Network-on-Chip
(NoC) interconnect paradigm appears the wisest choice in terms of flexibility, scalabil-
ity and performance. This chapters offers a concise introduction on Networks-on-Chip,
based on the work done in (1): its vital components, basic functionality and important
parameters which define it. It continues with relative work on other NoC buffering im-
plementations, fault-tolerant architectures and re-configurable NoCs. A brief overview
of the high-level simulator we modified concludes the chapter.

2.1 Networks-on-Chip

The structure of a Network-on-Chip (NoC) is similar to that of a traditional network.
A communicating node interfaces to a router and each router communicates with neigh-
boring routers, thus networking the entire chip. In the case of NoCs the communicating
nodes are IP cores which are also known as Processing Elements (PEs). Supported
processing elements can be anything from homogeneous or heterogeneous processors,
off-chip memories, GPUs, DSPs etc. Unlike bus designs, where the communication
medium may only be accessed by one sender at a time, the underlying structure of an
NoC permits multiple data transfers to occur concurrently between the different on-
chip routers. Data within the network is transmitted in packets. Data is disassembled
into packets and packets are reassembled into data at the Network Interface (NI) of
the processing element. A packet is made up of header and data fields. The header
contains addressing and control information similar to traditional networks, and the
data is the actual data that would be transmitted in traditional bus architectures.

The basic components of an on-chip network are its routers, the processing ele-
ments, the network interface and the physical links, as shown in figure 2.1. The figure

5

2. NETWORKS-ON-CHIP - RELATED WORK

Figure 2.1: High-level overview of an on-chip network - The three major compo-
nents of an on-chip network: the processing elements, the routers and the physical links

6

2.1 Networks-on-Chip

shows a partitioned chip into a 3 3 array of 9 tiles. Each tile is comprised of a PE
(IP core), its network interface and the interconnected router. Each tile communicates
with others via the underlying network structure. Each tile has an input port to insert
packets into the network and an output port to receive packets from the network. Data
transfer is done via routers, attached to each tile. The router interfaces to the rest of
the network via 5 ports the PE port, and the 4 networking ports, north, south, east and
west. The architecture of an NoC router is kept very simple in order to guarantee that
the overall network area remains as small as possible to allow more area for the actual
computational cores, the Processing Elements. A typical router consists of a crossbar,
a routing decision unit, and its buffers. A router transfers data in flits. A flit is the
maximum amount of information which can be transmitted from one router to another
in a single clock cycle and is defined by the bandwidth of the physical link between the
interconnected routers. If a packet size is greater than the flit size its broken down into
head, data and tail flits. The flits are assembled and disassembled at the PEs, thus
the router logic is kept as simple as possible. When a flit enters a router via one of its
ports, the router uses the header information found in the flit in order to router it to the
destination output port depending on the destination PE and its relative location on
the chip. In order to reduce network congestion and improve performance, the routers
provide buffer space, whose size depends on the overall network architecture and appli-
cation needs. An NoC architecture provides significant advantages when compared to a
traditional bus architecture. It offers significant improvement over bus synchronization
since routers can act as pipeline stages across long wires. Its more easily expandable
and can be easily reconfigured to support different communication protocols and can
more easily support fault-tolerance. Its key attribute is the separation of the com-
munication infrastructure from the computation nodes, which enables the distributed
control of the network traffic and resembles the interconnection architecture of high
performance parallel computing systems, on a single chip.

2.1.1 Networks-on-Chip Components

NoC Routers

The primary component for NoC architectures is the on-chip switch/router. While in
traditional networks, routers are not constrained in terms of the area they must occupy
and the power they can consume, in on-chip networks this is not the case. NoC routers
are limited in terms of buffering space, complexity and latency, and are designed with
minimal options to facilitate application requirements. A typical router consists of the
port dedicated to the PE, and all the necessary ports in order to communicate with its
neighboring routers (usually an additional four ports for the four cardinal directions:
north, south, east, and west). An example block diagram of a NoC router is shown in
Figure 2.2. The basic components of the router are its input/output ports, the crossbar
switch, the buffers and the routing unit. The input/output ports receive and send data
to the neighboring routers. The buffers act as intermediate stops for data waiting to
be routed, in order to minimize data loss and reduce congestion. The routing unit

7

2. NETWORKS-ON-CHIP - RELATED WORK

Figure 2.2: A detailed router block diagram

is responsible for directing the data between input and output ports, and finally the
crossbar is the data redirection unit. A router can be pipelined or non-pipelined. A
pipelined router can be clocked faster and possibly include stages for error detection
and correction, priority routing, etc. A non-pipelined router forwards received data
within one clock cycle, and requires minimal resources.

Input/Output Interface

The network communicates with the external world using dedicated I/O nodes, also
known as ingress and egress nodes. These nodes can be either PEs or independent
nodes. The ingress node(s) receive data to be transmitted to PEs from the external pins,
while the egress node(s) collect data received from PEs to send outside the network.
Each ingress or egress node connects to a network router. Since routers accept data
in packets, ingress nodes are responsible for packetizing the data in accordance with
the network packet protocol and forward the data to the network when the network is
ready to receive the data. In the same manner egress nodes de-packetize the data before
sending it outside the network. Ingress nodes prevent network congestion by buffering
any input data that is not ready to enter the network and egress nodes provide buffering
capability for data leaving the network, but cannot be accepted by the external world,
thus maintaining the input-output flow without loss of data.

Processing Elements

An NoC is tasked with the objective of connecting multiple Processing Elements (PEs)
that can be either homogeneous or heterogeneous. The nature of the PE is defined
by the application mapped on the chip and can be any component that performs the
required computations. The PE receives data from other PE(s) via the network infras-
tructure, performs its assigned computation task and returns the data to the appropri-
ate PE(s) or the network output. The PEs interface to the network via specific network
interface logic built in each PE. Based on the network communication protocol, each PE
contains hardware to process arriving network data, by stripping off the packet header,
identifying the data to be used for computation, and processing that data. When a
PE wishes to send data to another PE, it uses hardware similarly designed based on
the network communication protocol to packetize the output data and send it to the

8

2.1 Networks-on-Chip

network. Based on the network congestion, a PE can only send data when the network
is ready to accept it.

2.1.2 Communication Overview

Data Transfer

The communication of the processing elements occurs by using the switching activity
of the network infrastructure. Only data and control packets are able to travel within
the network. A packet consists of two fields, header and data. The header is used to
identify the data that arrives at a destination and can contain information fields such
as control information, priority, sequence number, source and destination address, error
correction/detection fields, etc. Just like traditional networks, header bits are used by
the router in the routing procedure, used by the recipient PEs for data identification
and classification, and used by the ingress/egress nodes to identify input/output data.
As we have mentioned before the smallest transmissible unit that can travel between
two routers is called a flit. A packet can consist of multiple flits, or a packet can be
itself a flit. Breaking down packets into flits allows for smaller buffer sizes and lower
wiring requirements. On the other side, breaking a packet into multiple flits increases
the latency of transmission, and can result in increased congestion. When a packet
is made up of multiple flits, the packet can be routed in a variety of ways, including
packet switching and wormhole switching. The header information is appended on the
first flit allowing the receiving router to begin computing the next destination early.
The subsequent flits follow the path discovered by the header flit, ensuring that they
all arrive in the same order and with no intermediate flits from another packet.

Routing

Data transmission can occur at every routing node, where each node is responsible for
receiving a flit/packet and sending that to a destination node. Data transfer from node
to node can happen using one of the following switching methods: store-and-forward,
virtual cut-through and wormhole routing. Store-and-forward switching: During
store-and-forward switching a packet is received and stored in its entirety before it is
forwarded to the next network destination. Thus in order for a packet to be able to
begin being transmitted to the next router, the last flit of each packet must be received.
The router has to provide sufficient buffering capacity for each packet, and the method
implies latency of at least the time required to receive the entire packet, times the
number of routers the packet travels. This can be too costly when dealing with multi-
hop paths. This method of routing is useful in networks where each packet is checked
for integrity at every router, as it allows a single error coding to protect and repair an
entire packet. Virtual cut-through switching: In virtual cut-through switching a
packet begins to be forwarded as soon as the destination router/PE can guarantee that
the entire packet will be accepted by the destination router. If the destination (either
a router or a PE) cannot guarantee full reception of the packet in its entirety, then the
packet is stored in the current router as a whole until the destination node is ready

9

2. NETWORKS-ON-CHIP - RELATED WORK

to accept it. The virtual cut-through algorithm is similar to the store-and-forward
method in terms of buffering requirements, however allows a faster communication
as a packet can immediately begin being transmitted, provided the destination can
receive it. Contrary to store-and-forward routing, the network latency depends on the
congestion levels (and hence buffer utilization) in the network. Wormhole switching:
In wormhole switching packets are split into flits and allowed to travel forward, even
if sufficient buffer space for the entire packet is not available. Flits are routed as soon
as the destination router/PE can guarantee acceptance of even a single flit, even when
not enough buffering capacity exists for an entire packet. The moment the first flit of a
packet is sent in an output port, the output port is reserved for flits of that packet, and
when the leading flit is blocked, the trailing flits can be spread over multiple routers
blocking the intermediate links. As a result, while wormhole routing offers significant
advantages in terms of both required buffer space and minimum latency, it is more
susceptible to congestion. The latency of wormhole routing is proportional to the sum
of packet size (in flits) and number of hops to the destination, rather than the product
of packet size (in flits) and number of hops, as in store-and-forward packet transmission.

A major problem that NoC architectures have to deal with is deadlock when routing
data. Deadlock occurs when multiple packets/flits wait for interdependent resources to
be released for progressing without being able to escape, as shown with the red lines
of figure 2.3. There are two types of deadlocks that can happen in NoCs, buffer and
channel deadlocks. A buffer deadlock occurs when all the buffers are full in a store-and-
forward network. This leads to a circular wait condition, where each node is waiting
for space availability to receive the next message, but as message n cannot progress, it
will never release its buffer space to message n + 1. Thus a circular wait state occurs,
in which no packet advances, and no buffer space is released for any packet to advance.
Of similar nature are channel deadlocks which result if all channels around a circular
path in a wormhole based network are busy (each node has a single buffer used for both
input and output).

One possible method of avoiding deadlock is to prevent circular dependencies by
carefully selecting a routing algorithm in such a way that it avoids creating data cycles
among routers. Another possible resolution is the implementation of extra channels per
routing node, called escape channels, which do not allow circular dependencies. The
presence of escape channels ensures that in a situation where a number of packets are
competing for each others resources, at least one of these packets will be able to make
forward progress by using one of the the escape channels, ensuring that resources are
freed, and that the remainder of the packets can also progress. Escape channels are
implemented either as reserved channels in the router or virtual channels.

Due to the nature of the network structure and constrained resources, an unwise
choice of a routing algorithm can be catastrophic to the overall network communication
and efficiency. The main objective of the routing algorithm is to provide deadlock free
and low-latency for data packets from a source PE to a destination PE. Input data is
multiplexed to the output ports of each router, using the control circuit implement-
ing the routing algorithm. There are two types of routing algorithms: deterministic

10

2.1 Networks-on-Chip

Figure 2.3: Deadlock Scenario - The red lines designate a deadlock when multiple flits
wait for interdependent resources to be released for progressing without being able to
escape

(determined at set-up time), or adaptive (dynamically adapting to the current net-
work state). Deterministic routing implies knowledge of the network topology a priori,
such that each router is configured with the relative location of each PE and the PEs
address. Adaptive algorithms use network related information such as congestion or
known faulty locations, to choose the best possible path for a packet to reach its des-
tination.

2.1.3 Communication Structures

An NoC architecture is defined by the underlying structure of it’s communication
medium. Since the primary purpose of the network is to provide the most efficient
communication between the PEs, the architecture that defines it is obviously one of it’s
most important concepts.

Network Topologies

Networks-on-chip adopted traditional network topologies due to the fact that its prop-
erties in terms of network performance are already known. Since the on-chip resources
are constrained by the amount of metal layers available during design the most com-
mon topologies used are the two-dimensional mesh structure, the two-dimensional torus
structure, and the three-dimensional mesh structure. The three aforementioned topolo-
gies are shown in Figure 2.4.

Of the three topologies presented in the figure the two-dimensional mesh structure
is the most favoured because it’s simpler to implement in terms of wiring and overall
design. However the three-dimensional mesh and the two-dimensional torus structures
are attractive options for specific applications due to the fact that a large number of
problems map better and in a more natural form in a more highly connected topology.

11

2. NETWORKS-ON-CHIP - RELATED WORK

Figure 2.4: NoC Network topologies - The most common NoC Network Topologies

A particular property of the n-dimensional mesh and tori is that they do not need
to have the same number of nodes in each dimension; thus the the node-to-node hop
count can be reduced. This accounts to a significant benefit in terms of latency and
power consumption. Toroidal structures allow packets leaving one edge of the network
to enter the opposite edge of the network, significantly reducing congestion hotspots.

Data Link

The purpose of the data link is to transmit data between PEs and routers reliably,
swiftly and using the least resources and power as possible. The data link consists of
the physical wires that transmit data between chip components. End to end commu-
nication is achieved via the switching links (wires) which connect to the output buffers
of each component. When a component is about to send data, based on the network
communication protocol, the connected buffer places the data on the bit lines which
transmit the data to the input buffer of the other component. When the data is re-
ceived, the data link is ready to accept the next data set. Provided that the timing is
correctly calculated, the receiver will read the data prior to the sender placing other
data on the line. Each end point uses two ports; an input and an output. Conse-
quently, data transmission is unidirectional, eliminating the need for a shared medium.
The primary issue when communicating over such links is the handshake protocol. The
handshake protocol can be implemented either synchronously, asynchronously, or using
the clock and additional control/latching signals.

Crossbar

Crossbars have an N number of inputs and an M number of outputs (where M can be
equal to N), and connect inputs to outputs based on the routing decision unit. The
inputs and the outputs are connected via a tristate buffer. The control signal for the
crossbar is generated from the routing control hardware. Typically, NoC crossbars are
5 5 (with 4 ports for input/output to the network and a port for the PE as shown in
the example in Figure 2.5), but it all depends on the number of ports each router has.

12

2.1 Networks-on-Chip

Figure 2.5: A typical NoC crossbar - The tri-state buffers are controlled by the routing
hardware, and connect a given input port to the desired output port

At each connection point between a row and a column, the tristate buffer acts as the
switching cell. The switching cell can either provides a connection to the row and a
column or not, depending on the switching signal.

Virtual Channels

The concept of virtual channels (VCs) has been introduced in traditional networks,
with the purpose of improving the QoS of the network, and to provide escape routes
for deadlock scenarios. However as the NoC-concept evolved, so did the use of virtual
channels which are used to enable the multiplexing of several packets onto a single
physical in order to enable the use of a variety of complex routing algorithms and cache
coherence protocols. The vast majority of adaptive routing algorithms developed for
interconnection networks rely on the extensive use of Virtual Channels for deadlock
avoidance and/or deadlock recovery. Similarly the plethora of cache coherence proto-
cols designed for modern Chip Multi-Processors necessitate the use of multiple virtual
networks (realized through virtual channels), in order to avoid protocol deadlocks.

Virtual channels are realized as separate data buffers where flits can be stored and
each buffer’s output is then multiplexed to the output resource. The operation of the
multiplexer is controlled by a selection signal which determines which data to send
next. It’s operation is critical in ensuring QoS and efficient operation. The placement
of incoming data into a particular VCs buffer is done using a number of systems, with
the most common being a weighted round robin system. In such a system, channels
are prioritized with larger weight values containing higher priority data than channels

13

2. NETWORKS-ON-CHIP - RELATED WORK

with lower weight values.

2.1.4 A Virtual Channel Router

The generic architecture of a Virtual Channel NoC router is depicted in Figure 2.6.
The router architecture is pipelined and comprises of five distinct stages: Routing
Computation, Virtual Channel(VC) Allocation, Switch(SW) Allocation, the Crossbar
and Link. During the Routing Computation Stage, the routing unit determines the
next-hop direction of the header flit of a packet based on the routing algorithm employed
for the on-chip network. During the Virtual Channel Allocation stage, the allocator
decides which virtual channel of the receiving router (downstream router) will accept
the packet based its VC availability. VC Allocation is performed into two distinct
stages, VA1 and VA2. During VA1 all the packets requesting a virtual channel select one
from the available pool of VCs based on the VC availability of the router’s neighbours.
During VA2 any arising conflicts are resolved with only one packet winning over a
conflicting VC. Routing computation and VC Allocation occur only for the header flit,
all subsequent flits follow the direction of the header flit. Thus a VC is occupied until a
whole packet (head flit - data flits - tail flit) depart to the downstream router. During
the Switch Allocation Stage a flit is selected to traverse the crossbar. A flit can only
depart if the downstream router has available buffer slots within the virtual channel
selected during VC Allocation. Just like VC Allocation, SW Allocation is performed
in two distinct stages, SW1 and SW2. In SW1 every packet which has acquired a VC
during VC Allocation selects one output port in order to traverse the link in the next
clock cycle. During SW2 any arising conflicts are resolved with only one packet winning
over each output port. The Crossbar stage follows the next cycle where all the packets
which won the output ports during SW Arbitration put allow their flits to depart and
during the Link Stage the flits traverse the link to the downstream router. In the
architecture of the generic NoC architecture depicted in the figure buffer availability
information is sent to the neighbouring routers using ON-OFF credits. That is in every
clock cycle if a virtual channel can accommodate a flit on the next cycle it sends an
ON credit signal otherwise it sends an OFF signal.

Importance of Fault-Tolerance in VC Routers

All types of faults (permanent, intermittent, and transient) may occur anywhere on
the chip and may affect any system component. Defects in various locations within the
Networks-on-Chip may affect the functionality of virtual channels directly (e.g., buffer
faults), or indirectly (e.g., arbiter faults). The Network-on-Chip virtual channels are so
deeply intertwined with the operation of the Chip Multi-Processors, that a malfunction
in any of the virtual channel components may lead to network and/or cache coherence
protocol deadlocks (i.e., whole-system inoperability). A network protocol deadlock
appears in figure 2.7. The figure depicts an on-chip network with one VC per router
port, using the deterministic XY routing algorithm. In the figure the processing element
of Router 0,2 wants to send a message to Router 2,0. As the packet’s flit traverse the

14

2.1 Networks-on-Chip

Figure 2.6: Generic Architecture of a Virtual Channel Router - The generic
architecture of a virtual-channel router comprising of its 5 basic pipeline stages: Routing
Computation, VC Arbitration, Switch Arbitration, Crossbar and Link Traversal

15

2. NETWORKS-ON-CHIP - RELATED WORK

Figure 2.7: Virtual Channel Fault - Under XY deterministic routing with one VC a VC
malfunction renders the NoC inoperable

network infrastructure from router to router, the South port of Router 2,1 breaks down,
before they manage to cross over to Router 2,0. The flits are dropped and since no
fault-tolerant policy (routing or a HW-based resolution) is used the network eventually
breaks down as the flits remain clogged in the previous routers, deadlocking everything.
A cache coherence protocol deadlock appears in figure 2.8. The figure depicts an on-chip
network with two VCs per router port, using the deterministic XY routing algorithm.
The network uses VC0 to transfer cache request messages and VC1 to transfer cache
reply messages. In the figure the processing element of Router 0,2 sends a cache request
message for data to Router 2,0. The cache request arrives correctly and Router 2,0
packetizes the requested data and sends it in a reply message on VC1. However east
port of VC1 is broken on Router 0,0. The cache reply is dropped and the network
eventually breaks down as the flits remain clogged in the previous routers, deadlocking
everything.

2.2 Related Work

2.2.1 NoC Buffers

A lot of work has been done into buffering implementations of the on-chip routers
and it has often been questioned whether on-chip networks ought to abandon buffering
structures within the router completely in order to minimize router area and improve
performance. The authors of (12, 13, 14) present implementations where an on-chip

16

2.2 Related Work

Figure 2.8: Virtual Channel Fault - Under XY deterministic routing with two VCs in
a cache-coherence protocol where VC0 is used for requests and VC1 for replies a VC
malfunction renders the NoC inoperable

network can be built without using buffers within the interconnecting routers. It ap-
pears though that the original design simplicity of buffer-less designs does not really
lower the complexity of the overall system as it is shown in (15) where a comparison
between the two has been made. The authors have reached the conclusion that the per-
formance, cost and complexity penalties of a bufferless implementation are not really
worth the removal of the router buffers.

The input buffers are an essential component of each router which aids in creating
virtual channels (VCs) in order to support different flow-control protocols and various
routing algorithms. It has been questioned whether using multiple physical channels
might be a better option than multiplexing a number of VCs onto one physical channel,
in an attempt to lower both the interconnect latency and router design complexity.
The authors of (16) have established that virtual channel on-chip networks can better
accommodate irregular traffic patterns which make them the wisest choice to better
address the versatile needs of the many-core era with the heterogeneity of processing
elements and the different application needs.

A lot of VC designs have appeared which allocate VCs statically (17, 18) or dynam-
ically (16, 19, 20, 21, 22), using atomic VCs or centralized buffering structures (22, 23)
and all of them aim to increase the performance of a VC router by reducing latency,
increasing throughput at the expense of power and area overheads.

17

2. NETWORKS-ON-CHIP - RELATED WORK

2.2.2 Fault Tolerance

In the recent years reliability has become an integral part of the design process because
the future of large-scale systems depends on the ability to tolerate faults and function
correctly in their presence. With each technologic scaling the shrinkage of transistors
makes the components of any system susceptible to faults due to electromigration,
soft errors and manufacturing defects. The importance of fault-tolerance in on-chip
networks cannot be stressed out more because an error within the links or any part of
the interconnecting router can render the whole network inoperable.

Faults in an on-chip network fall into two main categories, inter-router faults and
intra-router faults. Inter-router faults target the links interconnecting the various
routers which can either be fully or partially faulty. Resilience on the links them-
selves has put its weigh primarily on routing algorithms (24, 25, 26, 27) which aim to
either route around them, isolating the faulty areas or send multiple copies of a message
towards the destination across different routes to achieve the desired reliability. There
are methodologies which target only transient faults and do not bother to discover the
location or the reason of the error occurring but rely completely on error detection and
error correction codes (26, 28, 29) to solve the unwanted disrupture. Such methods
can only correct single-bit errors and rely on retransmission of data when multiple-bit
errors are detected. (30).

Our work is mainly concerned with intra-router faults, faults which might occur
within the router components. The two basic components of an NoC router are the
datapath and the control logic. The datapath is comprised of the in-out ports of
the router, the buffers and the crossbar. The control logic consists of the routing
computation unit, the virtual channel allocators, and the switch/crossbar arbiters. A
detailed analysis of the faults which might arise on an NoC network can be found in (31).
We are mainly concerned with restoring normal functionality in an NoC router when
an error occurs which may deem a specific virtual channel inaccessible. A read/write
logical error, a crossbar error, a VC Arbiter error or even a problem in the actual VC
slot may prohibit access to the VC.

The authors of (32) have tangled to create a reliable on-chip network with error
detection mechanisms such as invariance checks and cyclic redundancy code checks on
packets and error diagnosis which can determine the location using built-inself- test
mechanisms. In case of an error they can disable faulty components and configure
the functional components to work around the faulty ones while at the same time
restoring the system to a previously known good state. In case of a problem in one
of the ports, a port swapper is included which changes the way physical links are
connected to an input port. The scenario that a whole input port might break down
is unrealistic and completely disabling it can damage performance and can require
adaptive routing algorithms to route around a faulty port. The authors of (33) have
proposed a new router architecture which can disable a whole router in case an error
arises and reallocate the extra buffers which are still functioning correctly to neighboring
switches. A fault inside a specific virtual channel is more plausible, than a completely
faulty router or port. VC Renamer can simply disable the faulty virtual channel while

18

2.3 POP Net - A high-level cycle-accurate NoC Simulator

mapping it virtually onto another physical virtual channel thus allowing the network
to function correctly using simple deterministic routing algorithms without relying on
fault-tolerant routing schemes which can increase both the area overhead and latency
of the network.

2.2.3 Re-Configurable NoCs

There has been extensive research in architecting re-configurable NoCs. However,
most of this work has concentrated on the re-configuration of the router input ports, the
physical links, and the network topology (34). Pertaining to the buffers, reconfigurable
NoCs mainly re-allocate buffer space to the various ports, but do not provide any
flexibility in the structure of the VCs (35). The work presented in this thesis can
be integrated into existing reconfigurable NoC designs, in order to provide this extra
flexibility.

More relevant to our work, dynamic NoC buffer managers aim to break the
rigidity of static VC partitioning through run-time reconfiguration. Various dynamic
VC management proposals unify the buffer resources into a common pool, which is then
managed centrally and allocated to various VCs based on prevailing conditions (19, 22,
36, 37, 38, 39). Some designs can also vary the number of VCs dynamically at run-time
(19, 22). These techniques, however, require a complete redesign of the input port
architecture (i.e., they are disruptive) and incur significant area/power overhead, as a
result of the complexity involved in maintaining multi-ported unified buffer structures
and/or larger crossbar switches (19, 22, 38). In fact, most of these techniques were
intended for off-chip communication (36, 37, 38, 39), i.e., not as severely resource-
constrained as on-chip designs. Furthermore, these approaches are always-on: All
packets are forced to go through the unified buffer. On the contrary, the proposed VC
Renamer mechanism only requires minimal augmentations to the existing NoC input
port architectures. No unified buffers are required and modifications are only made to
the control logic of the conventional buffers. More importantly, the VC Renamer is
disabled until it is actually needed, because the data path is not modified.

2.3 POP Net - A high-level cycle-accurate NoC Simulator

POP net is a cycle-accurate interconnection network simulator developed by Li-Shiuan
Peh of Princeton University in 2000-2001. The simulator makes extensive use of the
Standard Template Library (STL) which is a C++ library of container classes, algo-
rithms, and iterators providing many basic algorithms and data structures useful in
creating a network simulator. What makes it possible are the STL library containers
which are highly parametrizable and can be used as templates for the various classes
which will build up the NoC. We modified this simulator to implement both versions
of the VC Renamer mechanism. A detailed analysis of the simulator is presented in A

19

2. NETWORKS-ON-CHIP - RELATED WORK

20

3

VC Renamer High-Level
Architecture

The VC Renamer mechanism is completely transparent to the neighboring NoC routers.
The routers are only aware of the presence of a specific number of VVCs (those required
by the routing algorithm and/or the coherence protocol). A disabled PVC in one
router will not become visible to the neighbors; VC Renaming will hide the anomaly
by remapping the affected VVC onto a different PVC. System functionality will be
fully maintained, albeit at a degraded performance. Note that PVC atomicity is now
broken, i.e., each PVC may hold more than one VVC. Atomicity within the individual
VVCs, however, is still maintained.

The critical issues of starvation and protocol-level deadlocks arise whenever two or
more VVCs are multiplexed over a single PVC. If one VVC dominates the available
buffer space, other VVCs may not be left with any available slots, leading to protocol-
level deadlocks (i.e., the higher-level protocol expects a particular message type that
never arrives, due to the above-mentioned problematic situation within a PVC). The VC
Renamer architecture ensures the absence of such pathologies through (a) intelligent
use of the credits mechanism, which regulates flow between the PVCs, and (b) the
assumption that the number of VVCs mapped to a specific PVC cannot exceed the
number of buffer slots physically present in the PVC. The credits mechanism will be
explained in Section 4.

Two different VC Renamer implementations have been developed: A Mask-Based
(MB) implementation and a Linked-List-Based (LLB) implementation. Both
versions offer the same functionality, but each is geared toward a different objective.
The MB approach is extremely lightweight and targets fault-tolerant designs, where the
VC Renamer mechanism will only be used in input ports affected by faults. The LLB
approach incurs a slightly higher hardware overhead and targets system upgradeability,
whereby the VC Renamer technique will be used in all routers simultaneously.

It should be noted here that both implementations do not affect the VC Allo-
cation (VA) or Switch Arbitration (SA) pipeline stages of the router. Since
only one of the VVCs mapped to a particular PVC is active in any given clock cycle,

21

3. VC RENAMER HIGH-LEVEL ARCHITECTURE

the VA and SA arbiters are completely unaffected. This attribute is of paramount
importance, since the VA and SA stages usually determine the router’s critical path.
It will be demonstrated through hardware synthesis that the VC Renamer oper-
ates within the slack of the other pipeline stages and does not impact the
router’s critical path. Moreover, as the VA and SA arbiters are unaffected, any
arbiter prioritization policies can still be used.

3.1 Mask-Based High-Level Architecture

In a typical NoC router input port, each PVC is realized using a k-deep FIFO buffer,
where k is the maximum number of flits (a packet comprises a number of fixed-size
flits) in a PVC, as shown in Figure 3.1. The figure presents a high-level overview of
the MB architecture. FIFO order within each PVC is maintained by head and tail
pointers. These pointers are k-deep, 1-wide, 1-hot circular registers. Assuming that
the head of the buffer is on the right-hand side (see Figure 3.1), the pointers move
from right to left. Upon arrival of a flit, the tail pointer advances one position to the
left; upon departure of a flit, the head pointer advances one position to the left. In the
MB implementation of the VC Renamer, each PVC maintains its generic head and tail
pointers. Two main additions are made: (1) a VVC-to-PVC Mapping Table, and (2)
a k-bit Mask for each supported VVC, which indicates the occupied positions in the
respective slots of the PVC. The ordering of the flits within each VVC is kept by only
allowing new flits to be stored in available PVC slots that are located to the left of the
left-most ’1’ in the VVC mask (remember, flits are assumed to fill in a VC buffer from
right to left). Thus, a particular VVC builds its mask from right to left – as flits arrive
– and tears down its mask from right to left– as flits depart.

The arrival of flits is regulated by the credits mechanism. Credits are only sent to
the upstream router (i.e., the potential sender) if a preliminary arrival test is success-
ful. Note that the proposed VC Renamer design assumes the use of on/off credits, i.e.,
stop/go signals (for each VVC) that regulate flow based on PVC buffer availability.
Credits are sent to upstream routers for each VVC in each input port. The credits
signals for all VVCs mapped to a specific PVC are determined by the slot availability
in said PVC; i.e., even though credits are distributed at the VVC-level, they are de-
termined by buffer availability at the PVC-level. To ensure that the VVCs mapped to
a particular PVC do not receive credits simultaneously, only credits for one VVC (per
PVC) are dispatched in any given clock cycle. Without loss of generality, the credits
for each VVC mapped to a single PVC are sent out in round-robin fashion
(one in each cycle). As will be shown later on, this round-robin dispatch of
credits has a minimal impact on performance. If needed, the round-robin policy
can be replaced by any other policy, in order to implement different VVC prioritization
schemes.

The Arrival Test algorithm – which is responsible for the credits mechanism – is
shown in Algorithm 1. Step 1 of the algorithm ensures the absence of starvation
and protocol-level deadlocks. Specifically, the two conditions of Step 1 guarantee that

22

3.1 Mask-Based High-Level Architecture

each VVC mapped to a specific PVC will always have access to at least one
buffer slot. Remember that the number of VVCs mapped to a specific PVC cannot
exceed the number of buffer slots physically present in the PVC. An “Empty” VVC
is one whose Mask contains all zeros. The conditions of Step 1 are independent and
can be fully parallelized in hardware. In addition to this check (Step 1), a flit is only
allowed to arrive if the position pointed to by the PVC tail pointer is to the left of
the left-most ’1’ in the corresponding VVC mask (remember, flits are assumed to fill
in a VC buffer from right to left, as shown in Figure 3.1). This ensures that the flits
of a particular VVC remain in order within the PVC buffer. This critical condition
is checked through the subtraction of the VVC mask from the 1-hot PVC tail pointer
(Step 2 of Algorithm 1) and observing the sign of the result (the left-most bit is assumed
to be the most significant bit). Credits are sent to the upstream router if the PVC tail
pointer is greater than the value of the VVC mask (positive subtraction result) and the
PVC tail pointer does not point to an occupied position (Step 3). Since flit departures
from the various VVCs may leave the PVC buffer fragmented, the PVC tail pointer
may point to an occupied position. In such a case, no credits are sent out in the current
cycle and the PVC tail pointer is shifted to the left. When a flit arrives at an input
port, the VVC ID (contained within the flit) is used to index into the VVC-to-PVC
Mapping Table, which uses the corresponding PVC ID to de-multiplex the incoming flit
to the appropriate PVC. The existing PVC tail pointer is used to store the flit into the
buffer. At the same time, the position of the PVC tail pointer denotes the respective
bit position in the active VVC mask that must be set to ’1’.

An example of how the arrival test functions is illustrated in Figure 3.2. In order
for a flit to be able to arrive from the neighbouring router, a credit ON signal must
first be sent. In the said figure we perform the steps from Algorithm 1 for VVC1.
We first have to examine if there are available slots in the PVC buffer. Since both
mapped VVCs have occupied slots in the PVC k=0. We have four available slots so the
first condition of the algorithm is true. During the second condition test we examine
whether the value of Tail Pointer (00010000) is greater than that of the VVC1’s Mask
(00000110). The second condition also holds. The last condition is to examine whether
the tail pointer points to a free slot. Since the tail pointer does point to a free slot all
the conditions hold and we sent an ON credit signal for VVC1. When an incoming flit
for VVC1 arrives, it’s stored at the position of the tail pointer and the VVC1 Mask bit
is set for that postion after which the tail pointer advances by one position. Note that
if we were to send a credit signal for VVC0 the tail-mask comparison wouldn’t hold (
00010000 ¡ 00101000) and we would have sent a credit OFF signal for VVC0.

Algorithm 1 Mask-Based Mechanism - Arrival Test

k = # of Empty VVCs mapped to current PVC
1: If {(PVC Free Slots > k) OR (Current VVC == Empty)} AND
2: (Tail Pointer > VVC Mask Value) AND
3: (Tail Pointer points to Free Slot) THEN
4: => VVC X Credits = ON

23

3. VC RENAMER HIGH-LEVEL ARCHITECTURE

1T 2b 2b 1B 1B 2h 1H

PVC

ID

PVC

ID

Mapping Table

VVC ID PVC ID

0 0

1 0

2 1

VVC Masks

VVC ID k-bit mask

0 01001101

1 00110010

2 00000000

One Router Input Port

VC Renamer – Mask-Based Mechanism

VVC

ID

VVC Mask

Head/Tail

Pointer

Subtractor

Sign

Tail Pointer Head Pointer

Head of FIFO Buffer
PVC0

PVC1 To

Crossbar

1H,1B,1T : Head, Body, Tail of VVC0

2h, 2b, 2t : Head, Body, Tail of VVC1

Figure 3.1: High-level overview of the Mask-Based (MB) implementation of the VC
Renamer. Only one input port is shown for clarity. In this example, VVC0 and VVC1 are
mapped to PVC0, while VVC2 is mapped to PVC1. Note that one subtractor per PVC is
required.

Algorithm 2 Mask-Based Mechanism - Departure Test

1: If (Downstream Router Credits = ON) AND
2: (Head Pointer points to Occupied Slot) AND
3: (Head Pointer > VVC Mask Value) THEN
4: => Allow Flit to Depart

In a similar manner, a flit is only allowed to depart if the position pointed by the
PVC head pointer is the position of the right-most ’1’ in the corresponding VVC mask.
This ensures that the flits of a particular VVC always depart the PVC buffer in the
correct order. The departure test (as shown in Algorithm 2) is performed by doing
a simple subtraction of the VVC mask from the 1-hot PVC head pointer (Step 3) and
observing the sign of the result (the right-most bit is assumed to be the most significant
bit). In the subtraction, the bit position in the VVC mask where the PVC head pointer
points to is set to ’0’. The flit is allowed to depart if the PVC head pointer does not
point to an empty position (Step 2) and the PVC head pointer is greater than the value
of the VVC mask (Step 3, positive subtraction result). If the PVC head pointer points
to an empty position, no flit departs the buffer and the head pointer is shifted to the
left. If the flit of one VVC cannot depart (e.g., no space in the downstream router),
the PVC head pointer moves to the next position in the following clock cycle, in order
to allow other VVCs to proceed and avoid Head-of-Line (HoL) blocking.

An example of how the departure test functions is illustrated in Figure 3.2. A flit
is allowed to depart from the port if the three conditions from Algorithm 2 hold. In
the said figure the head pointer points to a VVC1 flit so we only need to perform the

24

3.1 Mask-Based High-Level Architecture

0 0 0 0 0 0 1 0 Head Pointer

Tail Pointer

VVC1 Mask
VVC0 Mask

1B 1H 2b 2h

0 0 0 1 0 0 0 0

0 0 1 0 1 0 0 0
0 0 0 0 0 1 1 0

PVC0

MSB LSB

Arrival Test

Assume VVC1's Turn ; k = # of Empty VVCs = 0

1. Is {(PVC Free Slots > k) || (VVC1 == Empty)} YES

2. Is Tail Pointer > VVC1 Mask Value? YES

3. Does Tail Pointer point to free slot YES

[00010000] [00000110]

[01000000] [0 0 100000]

Reversed bit order

[LSB ... MSB]

Head Pointer bit

set to zero

VVC1 Credits = ON

Allow Flit to Depart

Departure Test

Head Pointer Points to VVC1's flit

Test needed only for VVC1

1. Are Downstream Router Credits ON?

2. Does Head Pointer Point to Occupied Slot?

3. Is Head Pointer > VVC1 Mask Value?

YES

YES

YES

: VVC1 Flits: VVC0 Flits

Figure 3.2: Step-by-step examples of the arrival and departure tests of the Mask-Based
(MB) implementation of the VC Renamer. Only one PVC is shown for clarity with two
VVCs (VVC0 and VVC1) mapped onto it. The various steps correspond to Algorithms 1
and 2.

test for VVC1. We first have to examine that the downstream router has sent a Credit
ON signal and that the head pointer does indeed point to an occuppied position. Since
both those conditions hold we must then verify that the Head Pointer value is greater
than the value of the VVC1 Mask. Since the mask is build from right to left it must
be teared down from right to left. The final comparison achieves just that but in order
to do so the values of both the Head Pointer and the Mask Value must be inverted and
the mask bit of the head pointer position must be reset. In our case the value of the
head pointer (01000000) is greater than the value of VVC1’s mask (00100000) so since
all three conditions hold, the flit is allowed to depart. When a flit departs the mask bit
where the head pointer points is reset and the head pointer advances by one position.

The steps in both Algorithms 1 and 2 can be fully parallelized and overlapped in

25

3. VC RENAMER HIGH-LEVEL ARCHITECTURE

hardware, thus incurring minimal latency overhead. More importantly, they are off the
router’s critical path (which lies in the VA/SA stages).

Note that credits are sent to upstream routers for each VVC in each input port.
To ensure that the VVCs mapped to a particular PVC do not receive credits simulta-
neously, only credits for one VVC (per PVC) are dispatched in any given clock cycle.
Without loss of generality, the credits for each VVC mapped to a single PVC
are sent out in round-robin fashion (one in each cycle). As will be shown later
on, this round-robin dispatch of credits has a minimal impact on perfor-
mance. If needed, the round-robin policy can be replaced by any other policy, in order
to implement different VVC prioritization schemes.

3.2 Linked-List Based High-Level Architecture

As will be demonstrated in Section 6, the mask-based approach incurs a performance
penalty. Hence, the Linked-List-Based (LLB) implementation of VC Renamer targets
higher performance at the expense of a slightly higher area/power overhead, as com-
pared to the MB implementation. As in the MB approach, the modifications required
to realize the LLB mechanism only affect the control logic of the existing PVC buffers.
The new components comprise: (1) a PVC Pointer List, (2) a Free-Slot FIFO List, (3)
a Front-of-VC List, (4) a Back-of-VC List, and (5) the same VVC-to-PVC Mapping
Table of the MB implementation. Figure 3.3 shows a high-level overview of the LLB
architecture.

Assuming k-deep PVC buffers, the PVC Pointer List contains one k-deep, log2 k-bit
wide vector per PVC. This vector holds the pointers to the next flit of each packet. The
first flit of each VVC mapped to a specific PVC is located by accessing the Front-of-VC
List, which is a list containing the location (log2 k bits) of the next-departing flit of
each VVC. The Front-of-VC List replaces the PVC head pointer. Once the location of
the next-departing flit is known, the PVC Pointer List points to the subsequent flits
of the same packet in a linked-list manner. Similarly, the Back-of-VC List contains
the location (log2 k bits) of the last-stored flit of each VVC. It is used to extend the
linked-list (i.e., add a new pointer) in the PVC Pointer List whenever a new flit of an
in-flight packet arrives. The Free-Slot FIFO List maintains the free slots in each PVC.
There is one such k-deep, log2 k-bit wide FIFO structure for each PVC in the input
port. The Free-Slot FIFO List supplies the write locations for new incoming flits. (i.e.,
it replaces the PVC tail pointer and is used to update the PVC Pointer List (with a
new tail pointer) and the Back-of-VC List upon a flit arrival.)

The credits are sent to upstream routers in the same round-robin manner as in
the MB approach (see Section 3.1). Unlike the MB technique, the credits in the LLB
implementation are regulated only by the two conditions shown in Step 1 of Algorithm
1, i.e.,

If {(PVC Free Slots > k) —— (Current VVC == Empty)}
=> VVC X Credits = ON,

where k = # of Empty VVCs mapped to current PVC.

26

3.2 Linked-List Based High-Level Architecture

1T 2b 2b 1B 1B 2h 1H

PVC

ID

PVC

ID

One Router Input Port

VC Renamer – Linked-List-Based
Mechanism

VVC

ID

From Free-Slot
FIFO List

From Front-of-
VC List

Head of FIFO Buffer
PVC0

PVC1
To

Crossbar

Mapping Table

VVC ID PVC ID

0 0

1 0

2 1

Front-of-VC List

VVC ID Position

0 0

1 1

2 -

Back-of-VC List

VVC ID Position

0 6

1 5

2 -

- - 5 6 3 4 2

1

0

PVC ID 7 6 5 4 3 2 1 0

PVC Pointer List

7

7 6 5 4 3 2 1 01

0

PVC ID 7 6 5 4 3 2 1 0

Free-Slot FIFO List

FIFO Head

1H,1B,1T : Head, Body, Tail of VVC0
2h, 2b, 2t : Head, Body, Tail of VVC1

Figure 3.3: High-level overview of the Linked-List-Based (LLB) implementation of the
VC Renamer. Only one input port is shown for clarity. In this example, VVC0 and VVC1
are mapped to PVC0, while VVC2 is mapped to PVC1.

As previously mentioned, this check ensures the absence of starvation and protocol-
level deadlocks. In this case, the number of free slots is determined by the occupancy
of the Free-Slot FIFO List, and the number of “Empty” VVCs is determined by the
number of invalid entries in the Front-of-VC List.

Algorithm 3 Linked-List-Based Mechanism - Flit Arrival

1: Get empty slot from Free-Slot FIFO List
2: Store flit in PVC
3: If (VVC = empty) update Front-of-VC List with flit position from Free-Slot FIFO

List
4: Else use Back-of-VC List to index into the PVC Pointer List and extend the

linked-list
5: Update Back-of-VC List with new flit position

When a new flit arrives at the input port (see Algorithm 3), the VVC ID within
the flit is used to acquire the corresponding PVC ID from the VVC-to-PVC Mapping
Table. The Free-Slot FIFO List is used to point the new flit to an available PVC slot
(Steps 1 and 2). If the Front-of-VC List entry for the particular VVC is empty (i.e.,
start of new packet), it is updated with the location granted from the Free-Slot FIFO
List (Step 3). At the same time, the corresponding Back-of-VC List entry is updated

27

3. VC RENAMER HIGH-LEVEL ARCHITECTURE

with the new location (Step 5). If the Front-of-VC List entry for the current VVC is
not empty (i.e., the new flit is part of an existing packet), then the Back-of-VC List is
used to index into the PVC Pointer List in order to extend the linked-list to the PVC
location of the new flit (Step 4).

Algorithm 4 Linked-List-Based Mechanism - Flit Departure

1: Acquire new Head Pointer from the Front-of-VC List
2: Allow flit to depart if credits are available
3: Push the head pointer value to the Free-Slot FIFO List
4: If (flit = tail flit) invalidate Front-of-VC List and Back-of-VC List entries
5: Else use the Head Pointer value to index into the PVC Pointer List and update

Front-of-VC List with acquired value

Flit departure follows a similar process (see Algorithm 4). Once a flit is selected
to depart, its VVC ID is used to acquire the next-departing flit location from the Front-
of-VC List (Step 1). This value is also enqueued within the Free-Slot FIFO List, since
the location will be vacated (Step 3). If the departing flit is a tail flit (i.e., the end of
a packet), the corresponding entries in the Front-of-VC List and the Back-of-VC List
are invalidated (Step 4, indicating an empty VVC). If the departing flit is not the last
flit of its packet, then the Front-of-VC List is used to index into the PVC Pointer List.
The indexed value within the PVC Pointer List points to the PVC location of the next
flit of the same packet. This value is used to update the Front-of-VC List ; i.e., the
location of the next flit of the same packet now becomes the new head of the VVC
(Step 5).

An example of how the arrival and departure mechanisms function is illustrated
in Figure 3.4. The said figure shows an arriving flit for VVC1 and a departing flit for
VVC0. When the flit arrives (Algorithm 3) we first get an empty slot position from
Free-Slot FIFO List which is used as the tail pointer (Step 1), in this case position 4.
We then store the flit in position 4 (Step 2). Since VVC1 was not empty when the flit
arrived there is no need to update the Front-of-VC List (Step 3). Afterwards we need
to update the PVC Pointer list and we can do so by storing the value of the tail pointer
(Position 4) inside the PVC Pointer List at the position where the Back-of-VC List for
VVC1 points (Position 4) (Step 4). Finally the Back-of-VC List is updated with the
position 4 of the tail pointer (Step 5). When a VVC0 flit departs (Algorithm 4 we first
have to acquire the head pointer value from the Front-of-VC List for VVC0 (Step 1). In
this case the head pointer attains the position 3 value and the flit is allowed to depart
(Step 2). Afterwards we push position 3 to tail of Free-Slot FIFO List (Step 3). Since
the departing flit is not the last flit of that VVC there’s no need to invalidate either the
Front-of-VC nor the Back-of-VC Lists (Step 4). Finally the value of the head pointer
(Position 3) is used to index the PVC Pointer List whose value (Position 5) is stored
in the Front-of-VC List for VVC0 (Step 5). Again, the steps in both Algorithms 3 and
4 can be fully parallelized and overlapped in hardware, and they are off the router’s
critical path. The credits are sent to upstream routers in the same round-robin manner

28

3.2 Linked-List Based High-Level Architecture

1B 1H 2b 2h

Front-of-VC List

VVC ID Position
0 1
1 3

Back-of-VC List

VVC ID Position
0 2
1 5

7 6 5 4 3 2 1 0

PVC0

PVC Pointer List for PVC0 Free-Slot FIFO List for PVC0

- - - - 0 7 6 4

FIFO Head

Flit Arrival – Incoming flit belongs to VVC1

1: Acquire Tail Pointer from Free-Slot FIFO List Position 4

2: Store Flit in Position 4

3. If (VVC != Empty) Do Nothing

4: PVC Pointer List [Back-of-VC List[VVC1] = 2] = Position 4

5: Back-of-VC List[VVC1] = Position 4

Flit Departure – Assume VVC0's turn

1: Acquire Head Pointer from Front-of-VC List[VVC0]

Position 3

2: Remove flit from PVC Position 3

3: Push Position 3 to tail of Free-Slot FIFO List

4: If (Flit != Last flit) Do Nothing

5: Front-of-VC List[VVC0] = PVC Pointer List [3] = Position 5

- 5 - 2

7 6 5 4 3 2 1 0

2b

Incoming Flit

1B 2b 2b 2h

Front-of-VC List

VVC ID Position
0 1
1 5

Back-of-VC List

VVC ID Position
0 4
1 5

7 6 5 4 3 2 1 0

PVC0

PVC Pointer List for PVC0 Free-Slot FIFO List for PVC0

- - - - 3 0 7 6

FIFO Head

- - 4 2

7 6 5 4 3 2 1 0

1H

Departing Flit

After Flit Arrival and Departure

Before Flit Arrival and Departure

Tail

Pointer

Tail

Pointer

: VVC1 Flits: VVC0 Flits

Arrived Flit

Departing Flit

Figure 3.4: Step-by-step examples of the arrival and departure mechanisms of the Linked-
List-Based (LLB) implementation of the VC Renamer. Only one PVC is shown for clarity
with two VVCs (VVC0 and VVC1) mapped onto it. The various steps correspond to
Algorithms 3 and 4.

29

3. VC RENAMER HIGH-LEVEL ARCHITECTURE

as in the MB approach. Credits are sent out based on the availability indicated in the
Free-Slot FIFO List.

30

4

VC Renamer - Mask-Based
Implementation

4.1 Implementation in High-Level Simulator

We implemented the Mask-Based mechanism in the cycle-accurate on-chip network
simulator implemented in C++, POPNet. The simulator is analyzed thoroughly in
Section 2.3 of Chapter 2. Its important to stress out the point that the VC Renamer
mechanism can be enabled on and off in accordance to the requirements of a port i.e.
in case of a faulty virtual channel or in case we need to support a greater number
of VCs on that port. As it is shown in Chapter 2, the POPNet router pipeline is
comprised of five basic stages: Routing Decision, VC Arbitration, SW Arbitration, the
flit-out buffer stage and the flit traversal stage. This section presents, through a series
of flow-control diagrams which are featured in B, the basic modifications needed in the
high-level simulator in order to support VC Renamer and to be able to turn-it on and
off according to the needs of the network. Alongside the 5-pipeline stages modifications
also had to be made to the way flits are handled when they arrive, to the way credits
are sent and some basic actions which needed to be executed at the end of the pipeline.

• Incoming Flits: When a flit arrives at an input port, a check is made to see if VC
Renamer is enabled on the selected port. If it is the flit is stored in the appropriate
PVC using the VVC-to-PVC mapping table and the appropriate VVC mask bit is
set using the current value of the tail pointer. If the VC Renamer bit is disabled
the flit is simply stored in the regular PVC. (Figure B.1)

• Router Pipeline Stage 1: Routing Decision: During this stage a for loop
begins examining all the router ports to see if routing needs to commence. For
each of the ports if VC Renamer is disabled all the normal VCs are examined
and if any of them are in the routing state (due to the arrival of a header flit),
the appropriate routing function is called which returns all the port-VC pairs of
the downstream router and stores them in a port-vc pair vector. If VC Renamer
is enabled all the PVCs are being examined one by one. For the PVCs which

31

4. VC RENAMER - MASK-BASED IMPLEMENTATION

only have one VVC mapping the normal procedure occurs, if the mapped VVC is
in the routing state (due to the arrival of a header flit), the appropriate routing
function is called which returns all the port-VC pairs of the downstream router
and stores them in a port-vc pair vector. For the PVCs which have more than
one VVC mappings the head-pointer of the PVC is examined to discover to which
VVC that flit belongs. if the mapped VVC for that flit is in the routing state,
the appropriate routing function is called which returns all the port-VC pairs of
the downstream router and stores them in a 2d vector. When all the ports are
examined, the simulator moves onto the stage 1 of the VC Arbitration phase.
(Figure B.2)

• Router Pipeline Stage 2: VC Arbitration VA1 Stage: During the VC
Arbitration, VA 1 Stage a loop examines all the router ports. If VC Renamer is
disabled all the VCs are examined and if a particular VC is in the VC Arbitration
state the vc selection function is called which uses all the port-vc pairs from the
routing decision stage to find and return an available port-VC pair which is stored
in a table and used in the VA2 phase. If VC Renamer is enabled all the PVCs are
being examined one by one. For the PVCs which only have one VVC mapping
the normal procedure occurs, the mapped VVC is examined and if it is in the
VC Arbitration state the vc selection function is called which uses all the port-vc
pairs from the routing decision stage to find and return an available port-VC
pair which is stored in a table and used in the VA2 phase. For the PVCs which
have more than one VVC mappings the head-pointer of the PVC is examined to
discover to which VVC that flit belongs. If the mapped VVC for that flit is in the
VC arbitration state, the vc selection function is called which uses all the port-vc
pairs from the routing decision stage to find and return an available port-VC pair
which is stored in a table and used in the VA2 phase. When all the ports are
examined, the simulator moves onto the stage 2 of the VC Arbitration phase.
(Figure B.3)

• Router Pipeline Stage 2: VC Arbitration VA2 Stage: During the VA2
Stage all of the ports are being examined one by one and for each port all of the
VCs (in the case where VC Renamer is disabled) and all of the VVCs (in the case
where VC Renamer is enabled) are checked to see if they managed to acquire an
output VC during the VA1 Stage. PopNET uses a random selection algorithm to
grant a VC/VVC an output port. The algorithm basically examines if the output
VC chosen by a VC/VVC is available and if it is, it’s assigned to that VC/VVC
and its state is updated to SW AB to be able to move to the Switch Arbitration.
(Figure B.4)

• Router Pipeline Stage 3: SW Arbitration SA1 Stage: During the SW
Arbitration SA 1 Stage a loop examines all the router ports. If VC Renamer is
disabled all the VCs are examined and if a particular VC is in the SW Arbitration
state, the assigned output VC is examined to see if there are available credits and
if there are, the VC number is stored inside a table which is used when SA2

32

4.1 Implementation in High-Level Simulator

commences. If VC Renamer is enabled all the PVCs are being examined one by
one. For the PVCs which only have one VVC mapping the normal procedure
occurs. The assigned output VC, for the requesting VVC, is examined to see if
there are available credits and if there are the VC number is stored inside a table
which is used when SA2 commences. For the PVCs which have more than one
VVC mappings the head-pointer of the PVC is examined to discover to which
VVC that flit belongs. if the mapped VVC for that flit is in the SW arbitration
state, the assigned output VC, for the requesting VVC, is examined to see if there
are available credits and if there are the VC number is stored inside a table which
is used when SA2 commences. When all the ports are examined, the simulator
moves onto the stage 2 of the SW Arbitration phase. (Figure B.5)

• Router Pipeline Stage 3: SW Arbitration SA2 Stage: During the SW
Arbitration SA 2 Stage a loop examines all the router ports and for each output
port only one request can be satisfied with a random VC/VVC being selected.
The winning request updates the state of the VC/VVC from SW AB to SW TR
to be able to follow to the flit outbuffer stage. (Figure B.6)

• Router Pipeline Stage 4: Flit Outbuffer Stage: In the flit outbuffer
stage the VCs/VVCs of each port are examined to see if they are in the switch
traversal state. If that is the case the flit is removed from the VC and added
to the appropriate output buffer. The ports are examined one by one and if VC
Renamer is disabled on a port, all of its VCs are examined and if a particular
VC is in the SW Traversal state, a flit is removed from the VC and added to the
appropriate output buffer. If the removed flit is at its destination it is consumed
by the router and if its the tail flit the VC is released. If VC Renamer is enabled
on the selected port, the VVCs are checked one by one. If the selected VVC is
the only one mapped onto a PVC the normal procedure is followed.If it’s in the
SW Traversal state, a flit is removed from the VVC and added to the appropriate
output buffer. If the VVC is mapped onto a PVC which has more than one VVC
mappings the head pointer is examined and if it points to a flit belonging to that
VVC, the VVC state is examined. If it’s in the SW traversal state, a comparison
is made to see if the head pointer is greater than the VVC mask. If it is a flit
from that PVC is removed and added to the correct output buffer. When all
the router ports are examined the simulator proceeds to the Flit Traversal stage.
(Figure B.7)

• Router Pipeline Stage 5: Flit Traversal Stage: During the flit traversal
stage each output buffer (North, South, East, West) is examined and if its not
empty, a flit us removed and sent to the appropriate downstream router. When
all the output buffers for all the ports are examined a router cycle ends. (Figure
B.8)

• Credit Mechanism: It’s important to note that the generic NoC router im-
plemented within the high-level simulator originally used counter-based credits.

33

4. VC RENAMER - MASK-BASED IMPLEMENTATION

In the counter-based credits scheme, each router holds a counter for each of its
neighbouring VCs initialized to the number of slots of that particular VC. When
a flit is sent from the current router, the value of the counter is decremented by
one and when the flit departs from the router whom the current router sends a flit
to, a signal informs it to increase that counter by one. In order for VC Renamer
to work, an ON-OFF credit mechanism is required where in each cycle a router
sends an ON signal for each of its VCs to its downstream router if it can accom-
modate at-most one flit and an OFF signal if it can’t. An extra process is added
to the pipeline of the router which is performed in parallel with the basic router
functions where in every clock cycle ON-OFF credits are being sent based on the
slot availability of each VC. In each port where VC Renamer is disabled, each VC
is examined and if it can accommodate one flit an ON credit signal is sent, oth-
erwise an OFF credit signal is sent. It’s important to note that, as shown in the
figure, the check performed is not for just one available slot but for four, in order
to accommodate the four cycle turn-around time needed for a flit to arrive at
the downstream router. If VC Renamer is enabled, and there’s only one mapped
VVC on a particular PVC the same procedure is used. For PVCs which have more
than one VVC mappings, credits are sent in a round-robin fashion for each of the
mapped VVCs. i.e. for three mapped VVCs it would be: VVC0-ON VVC1-OFF
VVC2-OFF, VVC0-OFF VVC1-ON VVC2-OFF, VVC0-OFF VVC1-OFF VVC2-
ON... For the VVC whose turn is to send an ON credit signal a comparison is
performed between the tail-pointer and the VVC’s mask value, if the tail-pointer
is greater than that of the mask value and there are more than 5 consecutive
empty buffer slots (once again to accommodate the turn-around time and avoid
mask violations) an ON signal is sent. To avoid the possibility of leading the
network into a state of deadlock, when there are less than five consecutive slots
available a counter is used which examines if the tail-pointer is stuck. When that
counter reaches 30 an ON signal is sent to allow the network to avoid deadlock.
When all the ports are examined the credit function exits. (Figure B.9)

• VC Renamer End of router pipeline Tasks: When the router pipeline ends,
all of the ports are examined one by one and for the ports where the VC Renamer
mechanism is enabled, every PVC with more than one VVC mapping adheres to
the following process. If the PVC is empty, the head and tail pointer are reset,
as well as the stuck head and stuck tail pointer counters in order to enhance the
performance of the mask-based mechanism. The tail pointer is then examined
and if it points to an occupied position it advances by one position. Then the
head pointer is examined and if points to an empty position it advances by one
position. A final check is made to the head pointer, where if it has been stuck
for more than 20 cycles it advances by one position and the stuck head pointer
counter is reset. This is done once again to ensure that the network will not in
any case get stuck in a state of deadlock if any of a VVC’s flits are not advancing
within the network. After these tasks a new router cycle begins. (Figure B.10)

34

4.2 Implementation in HDL Language

Figure 4.1: Mask-Based Storage Cost - Cost of the Mask-Based Implementation compared
to a Generic NoC Router as the number of mapped VVCs increases

4.2 Implementation in HDL Language

In order to quantify the actual hardware overhead of the Mask-based Implementation
in comparison with the generic NoC architecture, as well as verify that the critical
path of the router remains the same we had to get actual results concerning the area,
power and timing costs of our implementation. To get an initial feel of the cost of
our implementation we put quantified the storage cost required for the Mask-Based
approach compared to that of a Generic NoC Network.

Generic NoC Network Storage Cost

• Buffer Slots : # of ports X # of VCs X # of buffer slots X flit size

VC Renamer Mask-Based Storage Cost

• Buffer Slots : # of ports X # of VCs X # of buffer slots X flit size

• VVC Masks : # of ports X # of VVCs X # of buffer slots

It can be seen from Table A of the figure 4.1 that a generic NoC network with 2
8-slot 128-bit PVCs requires 10240 bits of storage space. If we enable VC Renamer
to add support for another two VVCs, thus doubling the number of supported virtual
channels, the required storage space is 10400 bits, a mere 1.56 % increase in area space.

It is safe to assume that the implementation of the wiring between the added compo-
nents will only amount to less than a 3% additional increase from the expected storage
cost, but we needed an actual HDL implementation to be sure. To do so we modified a

35

4. VC RENAMER - MASK-BASED IMPLEMENTATION

generic 5-stage wormhole NoC router architecture to add the Mask-Based functionality.
In the succeeding figures we show the additional modifications required to add support
for the VC Renamer Mask-Based mechanism . For brevity only a single router port
is shown. Figure 4.2 shows a port with two physical virtual channels with 2 mapped
VVCs on each one. For each port a VVC-to-PVC mapping table is required in order
to direct the flits in the right PVC based on the VC Id of the arriving flit. For each
PVC we require a subtractor which will perform the head/tail mask comparisons when
a flit is departing and when credits are sent. We also require an entry in the credit
round robin pointer list to allow credits to be sent in a round robin fashion as it was
shown in the beginning of this chapter. For each supported VVC we require a k-bit
VVC mask, where k is the number of buffer slots for the PVC buffer, to retain the the
VVC occupied slots on each PVC.

In Figure 4.3 the red lines show the actions that take place when a flit arrives at
the input multiplexer of the receiving port. When a flit arrives the VC ID feeds the
VVC-to-PVC mapping table so that the flit can be stored in the correct PVC . The
VC ID also feeds the multiplexer which selects the correct VVC Mask whose bit is set
to 1. When the flit is stored the tail pointer value is incremented. In the said figure a
flit arrives for VVC0 which is stored in PVC0.

In Figure 4.4 the red lines show the actions that take place when a flit departs from
the port to travel to the downstream router. The figure shows the departure for a flit
from VVC0. The value of the head pointer from PVC0 is used along with the value of
the VVC0 Mask in the subtractor so that the comparison can take place. If the head
mask value is greater than that of the VVC0 Mask (after the mask bit where the head
pointer is reset) the flit is allowed to depart.

In Figure 4.5 the red lines show the actions that take place when the round robin
mechanism for the credits is in use. In each cycle for every PVC the current VVC id
from the Credit Round Robin Pointer List is used to select the appropriate VVC Mask
which is then fed into the subtractor along with the tail pointer of that PVC. If the
tail pointer is greater than the value of the PVC mask and it does not point to an
occupied position, a credit ON signal is sent. In the shown figure, the credit check is
performed on VVC1 for PVC0 while for PVC1 the credit check is performed on VVC2.
For VVC0 and VVC2 a credit OFF signal is sent. When the credits are sent each entry
in the Credit Round Robin Pointer List is incremented so that credits will be sent for
the next mapped VVC during the next cycle.

After implementing the Mask-Based mechanism of VC Renamer in Verilog and
synthesizing it using Synopsy’s Design Compiler results showed that when 2 VVCs
are mapped on a single PVC (thus doubling the number of supported VVCs when
compared to the generic PVC) the MB implementation incurs minimal area and power
overhead of 2.09% and 0.23%, respectively. When 3 VVCs are supported the cost is
still quite low with only a 2.87% area overhead and 2.33% power overhead. While still
quite low, we can see that to support 4 VVCs the area and power overheads begin to
rise (5.36% and 3.71% respectively) which shows a non-linear increase as the number
of supported VVCs increases. Of course there wouldn’t be any need to map more

36

4.2 Implementation in HDL Language

Arriving Flit Departing Flit

PVC0

PVC1

VC Id

VVC0 Mask

VVC1 Mask

VVC2 Mask

VVC3 Mask

0

1

0

1

Sub
PVC0 Head Pointer

PVC0 Tail Pointer 0

1

0

1

PVC1 Head Pointer

PVC1 Tail Pointer 0

1

0

1

Credit Round Robin Pointer List

PVC

id

Current VVC

0 1

1 2

0

1

VVC0 Mask Value

VVC1 Mask Value

Send ON Credit signal if tail

doesn’t point to occupied

position and there are

available slots

Send ON Credit signal if tail

doesn’t point to occupied

position and there are

available slots

Allow flit to depart if head

doesn’t point to an empty

position

Zero-mask bit where the

head pointer points

Zero-mask bit where the

head pointer points

Sub

Tail Pointer Head Pointer

Tail Pointer Head Pointer

Select right VVC based

on Head Pointer Value

Select right VVC based

on Head Pointer Value

VCC

Credit / Depart Ctrl Signal

Credit / Depart Ctrl Signal

Credit / Depart Ctrl Signal

Credit / Depart Ctrl Signal

0

1

VVC0 Mask Value

VVC1 Mask Value

VVC-to-PVC

Mapping Table

Figure 4.2: Mask-Based Hardware Architecture - A port with 2 PVCs and 2 mapped
VVCs on each is shown.

37

4. VC RENAMER - MASK-BASED IMPLEMENTATION

Arriving Flit Departing Flit

PVC0

PVC1

VC Id

VVC0 Mask

VVC1 Mask

VVC2 Mask

VVC3 Mask

0

1

0

1

Sub
PVC0 Head Pointer

PVC0 Tail Pointer 0

1

0

1

PVC1 Head Pointer

PVC1 Tail Pointer 0

1

0

1

Credit Round Robin Pointer List

PVC

id

Current VVC

0 1

1 2

0

1

VVC0 Mask Value

VVC1 Mask Value

Send ON Credit signal if tail

doesn’t point to occupied

position and there are

available slots

Send ON Credit signal if tail

doesn’t point to occupied

position and there are

available slots

Allow flit to depart if head

doesn’t point to an empty

position

Zero-mask bit where the

head pointer points

Zero-mask bit where the

head pointer points

Sub

Tail Pointer Head Pointer

Tail Pointer Head Pointer

Select right VVC based

on Head Pointer Value

Select right VVC based

on Head Pointer Value

VCC

Credit / Depart Ctrl Signal

Credit / Depart Ctrl Signal

Credit / Depart Ctrl Signal

Credit / Depart Ctrl Signal

0

1

VVC0 Mask Value

VVC1 Mask Value

VVC-to-PVC

Mapping Table

Figure 4.3: Mask-Based Hardware Architecture - Flit Arrival - Shows the actions
performed when a flit arrives at the port. A port with 2 PVCs and 2 mapped VVCs on
each is shown.

38

4.2 Implementation in HDL Language

Arriving Flit Departing Flit

PVC0

PVC1

VC Id

VVC0 Mask

VVC1 Mask

VVC2 Mask

VVC3 Mask

0

1

0

1

Sub
PVC0 Head Pointer

PVC0 Tail Pointer 0

1

0

1

PVC1 Head Pointer

PVC1 Tail Pointer 0

1

0

1

Credit Round Robin Pointer List

PVC

id

Current VVC

0 1

1 2

0

1

VVC0 Mask Value

VVC1 Mask Value

Send ON Credit signal if tail

doesn’t point to occupied

position and there are

available slots

Send ON Credit signal if tail

doesn’t point to occupied

position and there are

available slots

Allow flit to depart if head

doesn’t point to an empty

position

Zero-mask bit where the

head pointer points

Zero-mask bit where the

head pointer points

Sub

Tail Pointer Head Pointer

Tail Pointer Head Pointer

Select right VVC based

on Head Pointer Value

Select right VVC based

on Head Pointer Value

VCC

Credit / Depart Ctrl Signal

Credit / Depart Ctrl Signal

Credit / Depart Ctrl Signal

Credit / Depart Ctrl Signal

0

1

VVC0 Mask Value

VVC1 Mask Value

VVC-to-PVC

Mapping Table

Figure 4.4: Mask-Based Hardware Architecture - Flit Departure - Shows the
actions performed when a flit departs from the port. A port with 2 PVCs and 2 mapped
VVCs on each is shown.

39

4. VC RENAMER - MASK-BASED IMPLEMENTATION

Arriving Flit Departing Flit

PVC0

PVC1

VC Id

VVC0 Mask

VVC1 Mask

VVC2 Mask

VVC3 Mask

0

1

0

1

Sub
PVC0 Head Pointer

PVC0 Tail Pointer 0

1

0

1

PVC1 Head Pointer

PVC1 Tail Pointer 0

1

0

1

Credit Round Robin Pointer List

PVC

id

Current VVC

0 1

1 2

0

1

VVC0 Mask Value

VVC1 Mask Value

Send ON Credit signal if tail

doesn’t point to occupied

position and there are

available slots

Send ON Credit signal if tail

doesn’t point to occupied

position and there are

available slots

Allow flit to depart if head

doesn’t point to an empty

position

Zero-mask bit where the

head pointer points

Zero-mask bit where the

head pointer points

Sub

Tail Pointer Head Pointer

Tail Pointer Head Pointer

Select right VVC based

on Head Pointer Value

Select right VVC based

on Head Pointer Value

VCC

Credit / Depart Ctrl Signal

Credit / Depart Ctrl Signal

Credit / Depart Ctrl Signal

Credit / Depart Ctrl Signal

0

1

VVC2 Mask Value

VVC3 Mask Value

VVC-to-PVC

Mapping Table

Figure 4.5: Mask-Based Hardware Architecture - Credit Mechanism - Shows
the actions performed when credits are sent.

40

4.2 Implementation in HDL Language

than 3 VVCs in a single PVC because that would hurt performance extremely. The
important thing to notice is that the synthesis results showed that the critical path of
the router was not affected by the Mask-Based implementation of VC Renamer. The
critical path still lies within the VC Allocation (VA) stage, which is untouched by VC
Renamer and all the new logic operates within the slack of the crossbar traversal and
link-traversal/buffer-write stages. (Table B and C of figure 4.1)

41

4. VC RENAMER - MASK-BASED IMPLEMENTATION

42

5

VC Renamer - Linked-List-Based
Implementation

5.1 Implementation in High-Level Simulator

Just as the Mask-Based mechanism the Linked-List-Based mechanism was also im-
plemented in the cycle-accurate on-chip network simulator, Popnet A. This section
presents, through a series of flow-control diagrams we are featured in C, the basic mod-
ifications needed in the high-level simulator in order to support the Linked-List-Based
implementation of VC Renamer and to be able to turn-it on and off according to the
needs of the network. Alongside the 5-pipeline stages modifications also had to be made
to the way flits are handled when they arrive and to the way credits are sent.

• Incoming Flits: When a flit arrives at an input port, a check is made to see if
VC Renamer is enabled on the selected port. If it is, an empty slot is acquired
from the Free-Slot-FIFO List of the appropriate PVC using the VVC-to-PVC
mapping table and the flit is stored. If the selected VVC, whose flit belongs to,
had no prior flits stored within the buffer the VVC entry in the Front-of-VC List is
updated using the flit position acquired from the Free-Slot-FIFO List. Otherwise
the Back-of-VC List is used to index the PVC Pointer List and extend the linked-
list. Then the Back-of-VC List is updated using the flit position acquired from
the Free-Slot-FIFO List. If the VC Renamer bit is disabled the flit is simply
stored in the regular PVC. (Figure C.1)

• Router Pipeline Stage 1: Routing Decision: During this stage a basic for
loop begins examining all the router ports to see if routing needs to commence.
For each of the ports if VC Renamer is disabled all the normal VCs are examined
and if any of them are in the routing state (due to the arrival of a header flit),
the appropriate routing function is called which returns all the port-VC pairs of
the downstream router and stores them in a port-vc pair vector. If VC Renamer
is enabled all the mapped VVCs are examined one by one. If any of them are in
the routing state, the appropriate routing function is called which returns all the

43

5. VC RENAMER - LINKED-LIST-BASED IMPLEMENTATION

port-VC pairs of the downstream router and stores them in a port-vc pair vector
(Figure C.2)

• Router Pipeline Stage 2: VC Arbitration VA1 Stage: During VC
Arbitration in the VA 1 Stage a loop examines all the router ports. If VC Renamer
is disabled on the port, all the VCs are examined and if a particular VC is in the
VC Arbitration state the vc selection function is called which uses all the port-vc
pairs from the routing decision stage to find and return an available port-VC pair
which is then stored in a table and used in the VA2 phase. If VC Renamer is
enabled on the selected port all the VVCs are examined and if a particular VVC
is in the VC Arbitration state the vc selection function is called which uses all the
port-vc pairs from the routing decision stage to find and return an available port-
VC pair which is then stored in a table to be used in the VA2 phase. When all the
ports are examined, the simulator moves onto the stage 2 of the VC Arbitration
phase. (Figure C.3)

• Router Pipeline Stage 2: VC Arbitration VA2 Stage: During the second
stage of VC Arbitration all of the ports are being examined one by one. For each
port all of the VCs (where VC Renamer is disabled) and all of the VVCs (where
VC Renamer is enabled) are checked to see if they managed to acquire an output
VC during the VA1 Stage. PopNET uses a random selection algorithm to grant
a VC/VVC an output port. The algorithm basically examines if the output VC
chosen by a VC/VVC is available and if it is, it’s assigned to that VC/VVC and
its state is updated to SW AB to be able to move to the Switch Arbitration
pipeline stage. (Figure C.4)

• Router Pipeline Stage 3: SW Arbitration SA1 Stage: During the SW
Arbitration, SA 1 Stage a loop examines all the router ports. If VC Renamer
is enabled on the port all the VVCs are examined and if a particular VVC is in
the SW Arbitration state, the assigned output VC is examined to see if there are
available credits and if there are the VC number is stored inside a table which is
used when SA2 commences. If VC Renamer is disabled on the port all the VCs
are examined and if a particular VC is in the SW Arbitration state, the assigned
output VC is examined to see if there are available credits and if there are the VC
number is stored inside a table which is used when SA2 commences. When all the
ports are examined, the simulator moves onto the stage 2 of the SW Arbitration
phase. (Figure C.5)

• Router Pipeline Stage 3: SW Arbitration SA2 Stage: During the SW
Arbitration SA 2 Stage a loop examines all the router ports and for each output
port only one request can be satisfied with a random VC/VVC being selected.
The winning request updates the state of the VC/VVC from SW AB to SW TR
to allow the flit to move to the outbuffer stage. (Figure C.6)

• Router Pipeline Stage 4: Flit Outbuffer Stage: In the flit outbuffer stage
the VCs/VVCs of each port are examined to see if they are in the switch traversal

44

5.2 Implementation in HDL Language

state. If that is the case the flit is removed from the VC and added to the
appropriate output buffer. The ports are examined one by one and if VC Renamer
is disabled on a port, all of its VCs are examined and if a particular VC is in the
SW Traversal state, a flit is removed from the VC and added to the appropriate
output buffer. If the removed flit is at its destination it is consumed by the router
and if its the tail flit the VC is released. If VC Renamer is enabled on the selected
port, all of its VVCs are examined and if a particular VVC is in the SW Traversal
state, a flit is removed from the VC and added to the appropriate output buffer.
When a flit is removed the flit position is pushed into the Free-Slot-FIFO List
entry of the appropriate PVC. If the flit is a tail flit the Front-of-VC List and
Back-of-VC List entries are invalidated. If the flit isn’t a tail flit the head pointer
value is used to index the PVC Pointer List so that the Front-of-VC List can be
updated with the next departing flit for that VVC. When all the router ports are
examined the simulator proceeds to the Flit Traversal stage. (Figure C.7)

• Router Pipeline Stage 5: Flit Traversal Stage: During the flit traversal
stage each output buffer (North, South, East, West) is examined and if its not
empty, a flit us removed and sent to the appropriate downstream router. When
all the output buffers for all the ports are examined a router cycle ends. (Figure
C.8)

• Credit Mechanism: It’s important to remember that the generic NoC router
implemented within the high-level simulator originally used counter-based credits.
For VC Renamer to work an ON-OFF credit mechanism was required where in
each cycle a router sends an ON signal for each of its VCs to its downstream
router if it can accommodate at-most one flit and an OFF signal if it can’t. An
extra process is added to the pipeline of the router which is performed in parallel
with the basic router functions where in every clock cycle ON-OFF credits are
being sent based on the slot availability of each VC. For each port where VC
Renamer is disabled, each VC is examined and if it can accommodate one flit
it sends an ON credit signal, otherwise it sends an OFF credit signal. As it’s
shown in the figure that the check performed is not for just one available slot
but for four, in order to accommodate the four cycle turn-around time needed
for a flit to arrive at the downstream router. If VC Renamer is enabled on a
port and there’s only one mapped VVC on a particular PVC the same procedure
is used. For PVCs which have more than one VVC mappings, credits are sent
in a round-robin fashion for each of the mapped VVCs. i.e. for three mapped
VVCs it would be: VVC0-ON VVC1-OFF VVC2-OFF, VVC0-OFF VVC1-ON
VVC2-OFF, VVC0-OFF VVC1-OFF VVC2-ON... (Figure C.9)

5.2 Implementation in HDL Language

In order to quantify the actual hardware area and power overheads of the Linked-List-
Based Implementation in comparison to the generic NoC architecture, as well as verify

45

5. VC RENAMER - LINKED-LIST-BASED IMPLEMENTATION

Table A: Linked List Based Implementation Storage Cost

Generic:

2 8 slot 128 bit VCs

Generic
VC Renamer – Linked List

2 VVCs /PVC 3 VVCs /PVC 4 VVCs /PVC

10240 bits
10900 bits

6.44%

10990 bits

7.32%

11080 bits

8.20%

Table B: Linked List Based Implementation – Required Hardware Area Cost

Generic:

2 8 slot 128 bit VCs

VC Renamer – Linked List

2 VVCs /PVC 3 VVCs /PVC 4 VVCs /PVC

7.71% 8.89% 11.37%

Table C: Linked List Based Implementation – Required Hardware Power Cost

Generic:

2 8 slot 128 bit VCs

VC Renamer – Linked List

2 VVCs /PVC 3 VVCs /PVC 4 VVCs /PVC

1.51% 3.04% 4.67%

Figure 5.1: Linked-List-Based Storage Cost - Cost of the Linked-List-Based Implemen-
tation compared to a Generic NoC Router as the number of mapped VVCs increases

that the critical path of the router remains the same we had to get actual results about
the area costs, power costs and timing results for our implementation. To get an initial
feel of the cost of our implementation we computed the storage cost required for the
Linked-List-Based approach compared to that of the Generic NoC Network cost.

Generic NoC Network Storage Cost

• Buffer Slots : # of ports X # of VCs X # of buffer slots X flit size

VC Renamer Linked-List-Based Storage Cost

• Buffer Slots : # of ports X # of VCs X # of buffer slots X flit size

• Free Slot FIFO and PVC ID List : # of ports X # of VCs X # of buffer slots X
log(# of buffer slots) x 2

• Front/Back of VC List and VVC count : # of ports X # of VVCs X log(# of
buffer slots) x 3

It can be seen from Table A of the figure 5.1 that a generic NoC network with 2
8-slot 128-bit PVCs requires 10240 bits of storage space. If we enable VC Renamer
to add support for another two VVCs, thus doubling the number of supported virtual
channels, the required storage space is 11900 bits, which amounts to a 6.44 % increase
in storage space. This is greater than the storage space required for the Mask-Based
Implementation but this is due to the fact that the Linked-List implementation targets
not only fault-tolerance but also the upgradability of the NoC, where all of the network
routers will be using the VC Renamer mechanism simultaneously.

46

5.2 Implementation in HDL Language

It is safe to assume that the implementation of the wiring between the added compo-
nents will only amount to less than a 3 % additional increase from the expected storage
cost, but we needed an actual HDL implementation to verify our assumption. To do
so we modified a generic 5-stage wormhole NoC router architecture to superimpose the
Linked List-Based functionality. In the succeeding figures we show the additional mod-
ifications required to add support for the VC Renamer Linked-List-Based mechanism
. For brevity only a single router port is shown. Figure 5.2 shows a port with two
physical virtual channels with 2 mapped VVCs on each one. For each port we require
a VVC-to-PVC mapping table in order to direct the flits in the right PVC based on
the VC Id of the arriving flit. For each PVC we require a k-flit PVC IDs List which
will keep the ordering of the flits. We also require a k-flit Free-Slot FIFO which will
keep the empty positions of the PVC. For each supported VVC we require an entry in
the Front-of-VC-List which shows the position of the first stored flit of that particular
VVC which is to be used as the head-pointer when flits depart. For each VVC we also
require an entry in the Back-of-VC-List which shows the position of the last stored flit
of that particular VVC in order to update the PVC Ids list correctly when another flit
arrives for a VVC.

In Figures 5.3 5.3 5.3 5.6 the red lines show the actions that take place when a flit
arrives at the input multiplexer of the receiving port.

• Flit Arrival Figure 5.3 : When a flit arrives at the input multiplexer of the port,
the first thing that needs to be done is to acquire the position where the flit will
be stored. The VC Id is used in order to select the correct PVC Id which then
feeds the Free Slot FIFO in order to acquire the value of the tail pointer.

• Flit Arrival Figure 5.4 : Afterwards the tail pointer is used along with the PVC
Id in order to store the flit in the correct PVC.

• Flit Arrival Figure 5.5 : If the arriving flit is the first flit of that VVC no changes
occur in the PVC IDs list. If it’s not the PVC IDs list is updated by storing
the tail pointer value on the position pointed by the Back-of-VC List of that
particular VVC.

• Flit Arrival Figure 5.6 : If the arriving flit is the first flit of that VVC, the Front-
of-VC List for that VVC is updated by storing the tail pointer position value. At
the same time the Back-of-VC List is updated by storing the tail pointer position
value of that VVC.

In Figures 5.7 5.8 5.9 the red lines show the actions that take place when a flit is
selected to depart from the port.

• Flit Departure Figure 5.7 : When a flit is selected to depart from the port, the
first thing that needs to be done is to acquire the position of the departing flit.
The VVC Id is used in order to select the correct position from the Front-of-VC
List which gives the value for the head pointer.

47

5. VC RENAMER - LINKED-LIST-BASED IMPLEMENTATION

• Flit Departure Figure 5.8 : Afterwards the head pointer is used along with the
PVC Id in order to allow the flit to depart from the correct PVC.

• Flit Departure Figure 5.9 : If the departing flit is the last flit of that VVC the
Front-of-VC and Back-of-VC List entries are invalidated. No changes occur in
the PVC IDs list. If it’s not the last flit the Front-of-VC List entry is updated
with the value acquired front the PVC IDs list by using the head pointer value
as reference.

The credit mechanism implemented for the Linked-List-Based approach is similar
to that of the Mask-Based approach. Credits are sent in a round-robin fashion for all
the VVCs mapped onto a single PVC. So basically the only difference with the Mask-
Based approach is that there is no need to perform any comparisons before sending
an ON credit signal, so as long as there are slots available in each cycle at most one
mapped VVC will send an ON credit signal.

After implementing the Linked-List-Based mechanism of VC Renamer in Verilog
and synthesizing it using Synopsy’s Design Compiler results showed that when 2 VVCs
are mapped on a single PVC (thus doubling the number of supported VVCs when
compared to the generic PVC) we have a minimal area and power overhead of 7.71%
and 1.51%, respectively. These appear to be higher than those of the Mask-Based
approach but within the +3% margin of the storage cost we speculated. When 3 VVCs
are supported the cost increases slightly with an 8.86% area overhead and 3.04% power
overhead. We can see that to support 4 VVCs the area and power overheads increase
in a greater rate (11.37% and 4.67% respectively) which shows that the cost of the
wiring for the supported VVCs increases in a non-linear pattern. The important thing
to notice is that the synthesis results showed that the critical path of the router was not
affected by the Linked-List-Based mechanism either. The critical path still lies within
the VC Allocation (VA) stage and all the new logic operates within the slack of the
crossbar traversal and link-traversal/buffer-write stages. (Table B and C of figure 5.1)

48

5.2 Implementation in HDL Language

Front of VC List

VVC

id

Pos Valid

0 0

1 0

2 0

3 0

Back of VC List

VVC

id

Pos Valid

0 0

1 0

2 0

3 0

PVC Ids List

PVC0 ID List

PVC1 ID List

VVC0_Empty

VVC1_Empty

VVC2_Empty

VVC3_Empty

VC_Id (log2V)
VC_Id (log2V)

Arr/Dep (1bit)

VCC (Wr Enable)

0

0

1

1

VC_Id (log2V)

Free slot FIFO

PVC0

PVC1PVC Id

Read/Write

Data OutData In

Arr/Dep (1bit)

Tail Pointer

GDD

Data In Data Out

VC Id

Wr Enable

0

1

0

1

0

1

Rd/Wr (1bit)

Rd Enable

Data In Data Out

VCC (Wr Enable)

0

1

Arr/Dep (1bit)

Wr Enable

0

1

Rd/Wr (1bit)

Rd Enable

0

1

Arr/Dep (1bit)

Tail Pointer

0

1

PVC_IDs

GDD

Data In
Data Out

PVC_Id

PVC
0

1

Arr/Dep (1bit)

Wr_en

Rd_en

Enable

VC Id

PVC position

Arriving Flit Departing Flit

PVC0

PVC1

Data In

VC Id

Figure 5.2: Linked-List-Based Hardware Architecture: figure shows the hardware needed
in order to create a port with 2 PVCs and 2 mapped VVCs on each PVC.

49

5. VC RENAMER - LINKED-LIST-BASED IMPLEMENTATION

Arriving Flit Departing Flit

Front of VC List

VVC

id

Pos Valid

0 0

1 0

2 0

3 0

Back of VC List

VVC

id

Pos Valid

0 0

1 0

2 0

3 0

PVC Ids List

PVC0 ID List

PVC1 ID List

PVC0

PVC1

VVC0_Empty

VVC1_Empty

VVC2_Empty

VVC3_Empty

VC_Id (log2V)

VC_Id (log2V)

Arr/Dep (1bit)

VCC (Wr Enable)

0

0

1

1

VC_Id (log2V)

Free slot FIFO

PVC0

PVC1PVC Id

Read

Tail PointerData In

Arr/Dep (1bit)

Tail Pointer

GDD

Data In Data Out

VC Id

Wr Enable

0

1

0

1

0

1

Rd/Wr (1bit)

Rd Enable

Data In Data Out

VCC (Wr Enable)

0

1

Arr/Dep (1bit)

Wr Enable

0

1

Rd/Wr (1bit)

Rd Enable

0

1

Arr/Dep (1bit)

Tail Pointer

0

1

PVC_IDs

GDD

Data In
Data Out

PVC_Id

PVC
0

1

Arr/Dep (1bit)

Wr_en

Rd_en

Enable

VC Id

PVC position

VC Id

Step 1: Acquire new tail pointer from free slot FIFO

Figure 5.3: Linked-List-Based Hardware Architecture - Flit Arrival - Step 1: Acquire
new tail pointer from Free-Slot-FIFO List

50

5.2 Implementation in HDL Language

Departing Flit

Front of VC List

VVC

id

Pos Valid

0 0

1 0

2 0

3 0

Back of VC List

VVC

id

Pos Valid

0 0

1 0

2 0

3 0

PVC Ids List

PVC0 ID List

PVC1 ID List

VVC0_Empty

VVC1_Empty

VVC2_Empty

VVC3_Empty

VC_Id (log2V)

VC_Id (log2V)

Arr/Dep (1bit)

VCC (Wr Enable)

0

0

1

1

VC_Id (log2V)

Free slot FIFO

PVC0

PVC1PVC Id

Read

Tail PointerData In

Arr/Dep (1bit)

Tail Pointer

GDD

Data In Data Out

VC Id

Wr Enable

0

1

0

1

0

1

Rd/Wr (1bit)

Rd Enable

Data In Data Out

VCC (Wr Enable)

0

1

Arr/Dep (1bit)

Wr Enable

0

1

Rd/Wr (1bit)

Rd Enable

0

1

Arr/Dep (1bit)

Tail Pointer

0

1

PVC_IDs

GDD

Data In

Data Out

PVC_Id

PVC
0

1

Arr/Dep (1bit)

Wr_en

Rd_en

Enable

VC Id

PVC position

Step 2: Store flit in the correct PVC using the correct tail pointer

Arriving Flit

PVC0

PVC1

VC Id Tail Pointer

Figure 5.4: Linked-List-Based Hardware Architecture - Flit Arrival - Step 2: Store flit in
the correct PVC

51

5. VC RENAMER - LINKED-LIST-BASED IMPLEMENTATION

Arriving Flit Departing Flit

PVC0

PVC1

VC Id

Front of VC List

VVC

id

Pos Valid

0 0

1 0

2 0

3 0

Back of VC List

VVC

id

Pos Valid

0 0

1 0

2 0

3 0

PVC Ids List

PVC0 ID List

PVC1 ID List

VVC0_Empty

VVC1_Empty

VVC2_Empty

VVC3_Empty

VC_Id (log2V)

VC_Id (log2V)

Arr/Dep (1bit)

VCC (Wr Enable)

0

0

1

1

VC_Id (log2V)

Free slot FIFO

PVC0

PVC1PVC Id

Read

Tail PointerData In

Arr/Dep (1bit)

Tail Pointer

GDD

Data In PVC Slot position

VC Id

Wr Enable

0

1

0

1

0

1

Rd/Wr (1bit)

Rd Enable

Data In Data Out

VCC (Wr Enable)

0

1

Arr/Dep (1bit)

Wr Enable

0

1

Rd/Wr (1bit)

Rd Enable

0

1

Arr/Dep (1bit)

Tail Pointer

0

1

PVC_IDs

GDD

Data In

Data Out

PVC_Id

PVC
0

1

Arr/Dep (1bit)

Wr_en

Rd_en

Enable

VC Id

PVC position

(*)

(*)

(*)

(*)

Step 3: If VVC is not empty update the PVC Ids list. Use the correct PVC Number and the PVC position

from the value of the back of the VC List. Store the new tail pointer on that position

Figure 5.5: Linked-List-Based Hardware Architecture - Flit Arrival - Step 3: Update
PVC IDs List using Back-of-VC-List Poistion

52

5.2 Implementation in HDL Language

Front of VC List

VVC

id

Pos Valid

0 0

1 0

2 0

3 0

PVC Ids List

PVC0 ID List

PVC1 ID List

VVC0_Empty

VVC1_Empty

VVC2_Empty

VVC3_Empty

VC_Id (log2V)

VC_Id (log2V)

0

0

1

1

VC_Id (log2V)

Free slot FIFO

PVC0

PVC1PVC Id

Read/Write

Data OutData In

Data In Data Out

VCC (Wr Enable)

0

1

Arr/Dep (1bit)

Wr Enable

0

1

Rd/Wr (1bit)

Rd Enable

0

1

Arr/Dep (1bit)

Tail Pointer

0

1

PVC_IDs

GDD

Data In

Data Out

PVC_Id

PVC
0

1

Arr/Dep (1bit)

Wr_en

Rd_en

Enable

VC Id

PVC position

Step 4: If flit=head flit update the front of VC List with the newly arrived flit position

Arriving Flit Departing Flit

PVC0

PVC1

VC Id

Back of VC List

VVC

id

Pos Valid

0 0

1 0

2 0

3 0

Arr/Dep (1bit)

VCC (Wr Enable)

Arr/Dep (1bit)

Tail Pointer

GDD

Data In Data Out

VC Id

Wr Enable

0

1

0

1

0

1

Rd/Wr (1bit)

Rd Enable

Step 4: Update the back of VC List with the newly arrived flit position.

(*)

Figure 5.6: Linked-List-Based Hardware Architecture - Flit Arrival - Step 4: Update
Back-of-VC List using Tail Pointer. If flit=head flit update Front-of-VC List using Tail
Pointer

53

5. VC RENAMER - LINKED-LIST-BASED IMPLEMENTATION

Front of VC List

VVC

id

Pos Valid

0 0

1 0

2 0

3 0

Back of VC List

VVC

id

Pos Valid

0 0

1 0

2 0

3 0

PVC Ids List

PVC0 ID List

PVC1 ID List

VVC0_Empty

VVC1_Empty

VVC2_Empty

VVC3_Empty

VC_Id (log2V)

VC_Id (log2V)

Arr/Dep (1bit)

VCC (Wr Enable)

0

0

1

1

VC_Id (log2V)

Free slot FIFO

PVC0

PVC1PVC Id

Read/Write

Data OutData In

Arr/Dep (1bit)

Tail Pointer

GDD

Data In Data Out

VC Id

Wr Enable

0

1

0

1

0

1

Rd/Wr (1bit)

Rd Enable

Data In Head Pointer

VCC (Wr Enable)

0

1

Arr/Dep (1bit)

Wr Enable

0

1

Rd/Wr (1bit)

Rd Enable

0

1

Arr/Dep (1bit)

Tail Pointer

0

1

PVC_IDs

GDD

Data In

Data Out

PVC_Id

PVC
0

1

Arr/Dep (1bit)

Wr_en

Rd_en

Enable

VC Id

PVC position

Step 1: Acquire new head pointer from the front of VC List

Arriving Flit Departing Flit

PVC0

PVC1

VC Id

Figure 5.7: Linked-List-Based Hardware Architecture - Flit Departure - Step 1: Acquire
new head pointer from Front-of-VC List

54

5.2 Implementation in HDL Language

Front of VC List

VVC

id

Pos Valid

0 0

1 0

2 0

3 0

Back of VC List

VVC

id

Pos Valid

0 0

1 0

2 0

3 0

PVC Ids List

PVC0 ID List

PVC1 ID List

VVC0_Empty

VVC1_Empty

VVC2_Empty

VVC3_Empty

VC_Id (log2V)

VC_Id (log2V)

Arr/Dep (1bit)

VCC (Wr Enable)

0

0

1

1

VC_Id (log2V)

Free slot FIFO

PVC0

PVC1PVC Id

Read/Write

Data OutData In

Arr/Dep (1bit)

Tail Pointer

GDD

Data In Data Out

VC Id

Wr Enable

0

1

0

1

0

1

Rd/Wr (1bit)

Rd Enable

Data In Head Pointer

VCC (Wr Enable)

0

1

Arr/Dep (1bit)

Wr Enable

0

1

Rd/Wr (1bit)

Rd Enable

0

1

Arr/Dep (1bit)

Tail Pointer

0

1

PVC_IDs

GDD

Data In

Data Out

PVC_Id

PVC
0

1

Arr/Dep (1bit)

Wr_en

Rd_en

Enable

VC Id

PVC position

Step 2: Allow flit to depart from the correct PVC using the correct head pointer

Arriving Flit Departing Flit

PVC0

PVC1

VC Id Head Pointer

Step 2: Push the head pointer value to the free slot FIFO

Figure 5.8: Linked-List-Based Hardware Architecture - Flit Departure - Step 2: Allow
flit to depart from the correct PVC and push head pointer position to Free Slot Fiflo List

55

5. VC RENAMER - LINKED-LIST-BASED IMPLEMENTATION

Arriving Flit Departing Flit

PVC0

PVC1

VC Id

Front of VC List

VVC

id

Pos Valid

0 0

1 0

2 0

3 0

Back of VC List

VVC

id

Pos Valid

0 0

1 0

2 0

3 0

PVC Ids List

PVC0 ID List

PVC1 ID List

PVC1

VVC0_Empty

VVC1_Empty

VVC2_Empty

VVC3_Empty

VC_Id (log2V)

VC_Id (log2V)

Arr/Dep (1bit)

VCC (Wr Enable)

0

0

1

1

VC_Id (log2V)

Free slot FIFO

PVC0

PVC1PVC Id

Read/Write

Data OutData In

Arr/Dep (1bit)

Tail Pointer

GDD

Data In Data Out

VC Id

Wr Enable

0

1

0

1

0

1

Rd/Wr (1bit)

Rd Enable

Data In Data Out

VCC (Wr Enable)

0

1

Arr/Dep (1bit)

Wr Enable

0

1

Rd/Wr (1bit)

Rd Enable

0

1

Arr/Dep (1bit)

Tail Pointer

0

1

PVC_IDs

GDD

Data In

PVC_IDs

PVC_Id

PVC
0

1

Arr/Dep (1bit)

Wr_en

Rd_en

Enable

VC Id

Head Pointer
(*)

(*)

Step 3: If departing flit is the last one for that VVC invalidate the front VC List entry, otherwise update the new front of VC List value with that acquired from the PVC Ids

list using the value of the head pointer

Step 3: If departing flit is the last one for that VVC invalidate the back VC List entry.

Figure 5.9: Linked-List-Based Hardware Architecture - Flit Departure - Step 3: If flit =
tail flit invalidate Back and Front of VC List entries, else update Front-of-VC List entry
by referencing the PVC IDs List

56

6

Simulations - Results Analysis

6.1 Simulation Platform

Both incarnations of VC Renamer were implemented within the cycle-accurate NoC
simulator analyzed in section A which operates at the granularity of individual micro-
architectural components. The simulations assume wormhole switching, 4-stage pipelined
routers, and deterministic XY routing. Each router consists of five physical ports :
North, South, East, West, and the local processing element. Every simulation runs
for 1,000,000 clock cycles and each packet consists of five 32-bit flits. Our evaluation
utilizes (a) synthetic Uniform Random (UR) traffic patterns in an 8 × 8 2D MESH
network, and (b) traces from real applications running on the TRIPS (40) NoC-
based multicore processor. The TRIPS processor includes a 4× 10 mesh On-Chip
Network (OCN) (40), which uses XY routing and 4 VCs per input port. We use traces
extracted from 11 representative benchmarks of the SPEC CPU2000 Suite (41) running
on the TRIPS cycle-accurate simulator.

The spatial distribution of VC faults in the system is inspired by the model in (42).
We define a VC fault as the inability to use a VC within a router input port, because of
faults to components that affect the VC functionality. We explore two distributions of
spatial VC fault placement: (1) Random (RM), where VC faults are uniform-randomly
distributed throughout the NoC, and (2) Hotspot (HS), where VC faults are distributed
only within a group of spatially correlated routers. In order to assess the robustness of
VC Renamer, we vary the percentage of faulty VCs in the whole NoC from 1 to 10%.
Each simulation was repeated 50 times and the results were averaged.

Finally, in order to evaluate the hardware cost of the proposed mechanisms, a con-
ventional NoC router and both VC Renamer architectures were implemented in Ver-
ilog and synthesized in Synopsys Design Compiler using 65 nm commercial
standard-cell libraries.

57

6. SIMULATIONS - RESULTS ANALYSIS

6.2 Results Analysis

6.2.1 Fault Tolerance Scenarios

We begin our evaluation with synthetic traffic patterns. We initially set the VC fault
rate to 5% to see how VC Renamer fares as the traffic injection rate is varied. Each
input port (in all designs) has four, 8-deep PVCs. We assume that the generic NoC
design has spare VC buffers in every router input port to deal with VC faults. This,
of course, amounts to an enormous overhead, which VC Renamer aims to eliminate by
not relying on spare buffers at all. A fault in the MB and LLB designs is assumed to
disable one of the 4 PVCs of an input port, thus forcing two VVCs to be mapped to one
of the remaining 3 PVCs. The scenario in figures 6.1 and 6.2 assumes RM spatial fault
distribution and compares the attained average network latency of VC Renamer to a
generic NoC that is unaffected by the faults, because of the spare buffers (i.e., ideal
scenario with immunity to faults). The MB and LLB implementations experience only
4.47% and 2.74% average drops in performance, respectively. Throughput decreases
by only 4.96% and 0.52%, respectively. Similar trends are observed in the scenario of
Figures 6.3 and 6.4, which assumes HS fault distribution. The MB approach exhibits
worse performance, because some cycles are skipped (i.e., nothing happens) during
operation, as a result of the Step 2 condition check of Algorithm 1 and Step 3 of
Algorithm 2 (4). Here, the MB and LLB mechanisms experience 3.57% and 1.52%
average declines in performance, respectively. The decrease in throughput is 5.22% and
0.75%, respectively.

The traffic injection rate is then set at 0.2 flits/node/cycle (in-between the zero-
load and onset-of-saturation rates) and the VC fault rate is varied. Figures 6.5 and
6.6 illustrate the results assuming RM and HS spatial fault distributions, respectively.
Note that the “Generic” latency in these figures is constant, since the generic design
is unaffected by faults (ideal). Clearly, at low VC fault rates, the drop in performance
is almost imperceptible with VC Renamer (as compared to an ideal design unaffected
by faults). Even with 10% faulty VCs, the MB and LLB techniques experience modest
5.37% and 3.45% average drops in performance (over both spatial fault distributions),
respectively.

Figure 6.7 summarizes results of trace-driven simulations of real applications run-
ning on the TRIPS processor. A VC fault rate of 5% and RM spatial fault distribution
are assumed. On average, the MB and LLB implementations experience 6.11% and
1.80% decreases in performance, respectively, as compared to the ideal, fault-free set-
ting. Clearly, both techniques are suitable for fault-tolerant designs. If area/power
overhead is an issue, the MB approach may be preferable, due to its lower overhead,
as will be described shortly.

6.2.2 Upgradability Scenarios

In order to assess the upgradeability aptitude of VC Renamer, we run four different
scenarios. In all the upgradeability scenarios VC Renamer is active in all router input

58

6.2 Results Analysis

0 0.1 0.2 0.3 0.4
30

40

50

60

70

80

90

100

Injection Rate (flits/node/cycle)

A
ve

ra
ge

 N
et

w
or

k
La

te
nc

y
(c

yc
le

s)

Generic
Mask−Based
Linked−List−Based

Figure 6.1: VC fault rate: 5%, RM spatial fault distribution, UR synthetic traffic

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

Injection Rate (flits/node/cycle)

T
hr

ou
gh

tp
ut

Generic
Mask−Based
Linked−List Based

Figure 6.2: VC fault rate: 5%, RM spatial fault distribution, UR synthetic traffic

0 0.1 0.2 0.3 0.4
30

40

50

60

70

80

90

100

Injection Rate (flits/node/cycle)

A
ve

ra
ge

 N
et

w
or

k
La

te
nc

y
(c

yc
le

s)

Generic
Mask−Based
Linked−List−Based

Figure 6.3: VC fault rate: 5%, HS spatial fault distribution, UR synthetic traffic

ports in the entire NoC. For fairness, all designs have the same total number of buffer
slots (e.g., equal buffer space) per input port. In the first three scenarios we access the

59

6. SIMULATIONS - RESULTS ANALYSIS

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

Injection Rate (flits/node/cycle)

T
hr

ou
gh

tp
ut

Generic
Mask−Based
Linked−List Based

Figure 6.4: VC fault rate: 5%, HS spatial fault distribution, UR synthetic traffic

1 2 3 4 5 6 7 8 9 10
30

35

40

45

A
ve

ra
ge

 N
et

w
or

k
La

te
nc

y
(c

yc
le

s)

VC Fault Rate (%)

Generic
Mask−Based
Linked−List−Based

Figure 6.5: Injection Rate: 0.2 flits/node/cycle, RM spatial fault distribution, UR syn-
thetic traffic

1 2 3 4 5 6 7 8 9 10
30

35

40

45

A
ve

ra
ge

 N
et

w
or

k
La

te
nc

y
(c

yc
le

s)

VC Fault Rate (%)

Generic
Mask−Based
Linked−List−Based

Figure 6.6: Injection Rate: 0.2 flits/node/cycle, HS spatial fault distribution, UR syn-
thetic traffic

60

6.2 Results Analysis

applu art bzip2crafty gap gzip mcf mgridswimvortex vpr
10

15

20

25

30

35

40

45

A
ve

ra
ge

 N
et

w
or

k
La

te
nc

y
(c

yc
le

s)

SPEC CPU2000 Benchmarks

Generic
Mask−Based
Linked−List−Based

Figure 6.7: VC fault rate: 5%, RM spatial fault distribution, Traces from real applica-
tions

behavior of VC Renamer on an 8×8 2D MESH network using uniform synthetic traffic
patterns. In the generic network of scenario 1 each router port has six 6-slot virtual
channels. To keep the total number of buffer slots equal, the VC Renamer network
routers have 4 9-slot PVCs in each port. This equals to two PVCs with two mapped
VVCs and two PVCs with only one mapped VVC.

Figures 6.8 and 6.9 compare the latency and throughput of both VC Renamer
implementations compared to that of the Generic NoC for the first upgradeability. The
Mask-Based implementation suffers with a 13,39% increase in delay and a 2% loss in
throughput, while the Linked-List-Based incurs a mere 3,22% in delay with a negligent
drop of 0,0004% in throughput.

In the second upgradeability scenario each router port of the generic NoC has six 10-
slot virtual channels while the VC Renamer NoC has 5 12-slot PVCs thus only one PVC
has two mapped PVCs while the other four have only one mapped VVC. Figures 6.10
and 6.11 compare the latency and throughput of both VC Renamer implementations
compared to that of the Generic NoC. We can see that in this scenario the Mask-
Based implementation fares better with a a 4,69% increase in delay and a 2% loss
in throughput. The Linked-List-Based implementation exhibits excellent performance
with a delay of 0,13% and a 0,0001% loss in throughput.

The Generic NoC router in the third upgradeability scenario has 8 6-slot VCs while
the VC Renamer routers have 6 8-slot PVCs, thus in this scenario we have two PVCs
which have two mapped VVCs and four PVCs with only one VVC mapping. We can
see from figure 6.12 that the MB-mechanism suffers from a 8,53% additional delay
while the LLB-mechanism from a 3,49% delay. The graph in figure 6.13 shows that the
MB-approach has a 3% drop in throughput and the LLB-approach a 0,0007% drop.

For the upgradeability scenario four we run the TRIPS (40) traces – which require
4 VCs/port – in a network with only 3 PVCs/port. While the MB implementation
experiences a 15.52% average drop in performance (because of excessive cycle skips
attributed to the condition checks of Algorithms 1 and 2), the LLB implementation

61

6. SIMULATIONS - RESULTS ANALYSIS

0 0.1 0.2 0.3 0.4
30

40

50

60

70

80

90

100

Injection Rate (flits/node/cycle)

A
ve

ra
ge

 N
et

w
or

k
La

te
nc

y
(c

yc
le

s)

Generic
Mask−Based
Linked−List−Based

Figure 6.8: Upgradeability Scenario 1 - Latency: Generic:6 6-slot VCs - VC Renamer: 6
VVCs facilitated on 4 9-slot PVCs

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

Injection Rate (flits/node/cycle)

T
hr

ou
gh

tp
ut

Generic
Mask−Based
Linked−List Based

Figure 6.9: Upgradeability Scenario 1 - Throughput : Generic:6 6-slot VCs - VC Renamer:
6 VVCs facilitated on 4 9-slot PVCs

only suffers a 1.95% average decline.

It is interesting to note that deep PVC-buffers (with greater than 8-buffer slots)
can better accommodate two VVCs, even in the case of the MB-mechanism. So both
mechanisms can support upgradeability scenarios if they require one additional VVC.
We can see from the scenarios above that when two PVCs accommodate two VVCs
each, especially in the MB-mechanism, performance is clearly affected with more than
10% additional latency, while the LLB-mechanism has less than 5% additional latency.
Also in an NoC network featuring more than four PVCs, the VC Renamer mechanism
does not impact performance and in the LLB-mechanism its almost indistinguishable
from the generic case. Clearly, the LLB technique is more suitable for upgradeability
purposes, due to its minimal impact on performance, even when used in all routers
simultaneously.

62

6.2 Results Analysis

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

Injection Rate (flits/node/cycle)

T
hr

ou
gh

tp
ut

Generic
Mask−Based
Linked−List Based

Figure 6.10: Upgradeability Scenario 2 - Latency: Generic:6 10-slot VCs - VC Renamer:
6 VVCs facilitated on 5 12-slot PVCs

0 0.1 0.2 0.3 0.4
30

40

50

60

70

80

90

100

Injection Rate (flits/node/cycle)

A
ve

ra
ge

 N
et

w
or

k
La

te
nc

y
(c

yc
le

s)

Generic
Mask−Based
Linked−List−Based

Figure 6.11: Upgradeability Scenario 2 - Latency: Generic:6 10-slot VCs - VC Renamer:
6 VVCs facilitated on 5 12-slot PVCs

6.2.3 Hardware Cost Comparison

In subsections 4.2 and 5.2 of chapters 4 and 5 respectiwely we saw the actual hardware
implementations for the area and power costs for both VC Renamer designs individu-
ally. Table 6.1 summarizes the percentage area/power overhead of VC Renamer over
a generic NoC design, as the number of mapped VVCs per PVC is varied for both
designs. For example, if 2 VVCs are mapped per PVC, the number of supported VVCs
is double that of the existing PVCs. We show results up to an extreme 4 VVCs/PVC
to examine the scalability of the proposed design. Figures 6.15 and 6.16 show in graphs
the percentage area/power overheads respectively. For doubling the number of sup-
ported VCs (i.e., a huge flexibility boost), the MB implementation incurs minimal area
and power overhead of 2.09% and 0.23%, respectively, while the LLB technique incurs
area and power overhead of 7.71% and 1.51%, respectively.

To actually quantify the area and power savings VC Renamer would provide we

63

6. SIMULATIONS - RESULTS ANALYSIS

0 0.1 0.2 0.3 0.4
30

40

50

60

70

80

90

100

Injection Rate (flits/node/cycle)

A
ve

ra
ge

 N
et

w
or

k
La

te
nc

y
(c

yc
le

s)

Generic
Mask−Based
Linked−List−Based

Figure 6.12: Upgradeability Scenario 3 - Latency: Generic:8 6-slot VCs - VC Renamer:
8 VVCs facilitated on 6 8-slot PVCs

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

Injection Rate (flits/node/cycle)

T
hr

ou
gh

tp
ut

Generic
Mask−Based
Linked−List Based

Figure 6.13: Upgradeability Scenario 3 - Latency: Generic:8 6-slot VCs - VC Renamer:
8 VVCs facilitated on 6 8-slot PVCs

compared a Generic NoC Router with 4,6,8 VCs with both implementations of VC Re-
namer with 4, 6, 8 VVCs. In order for the comparison to be fair, all implementations
feature the same number of buffer slots. For example a PVC with 8 slots and 4 mapped
VVCs is compared to a Generic NoC with 4 2-slot VCs. As it can be seen from the
results of table 6.2 even with 4 mapped VVCs compared to a generic NoC architecture
we have huge area and power savings. Compared to the Generic NoC architecture the
Mask-Based implementation requires 75.69% less area and 8.75% less power while the
Linked-List-Based implementation requires 66.53% less area and 6.40% less power. As
the number of mapped VVCs increases the area and power savings are even greater
with 411.63% and 296.52% area and power savings for the Mask-Based Implementation
and 384.02% and 299.23% area and power savings for the Linked-List-Based implemen-
tation. When comparing the VC Renamer VVCs versus the Generic NoC VCs, both
the VC Renamer implementation has enormous area and power savings.

More importantly, our synthesis results also showed that the critical path of the

64

6.2 Results Analysis

applu art bzip2crafty gap gzip mcf mgridswimvortex vpr
10

15

20

25

30

35

40

45

A
ve

ra
ge

 N
et

w
or

k
La

te
nc

y
(c

yc
le

s)

SPEC CPU2000 Benchmarks

Generic
Mask−Based
Linked−List−Based

Figure 6.14: Upgradeability Scenario 4 - Latency:Generic:4 6-slot VCs - VC Renamer: 4
VVCs facilitated on 3 8-slot PVCs

Table 6.1: Hardware synthesis results: VC Renamer (2 PVCs) overhead over a generic
NoC router (2 VCs) implementation

% Area Overhead % Power Overhead
of VVCs per PVC 2 3 4 2 3 4

Mask-Based 2.09 2.87 5.36 0.23 2.33 3.71
Linked-List-Based 7.71 8.89 11.37 1.51 3.04 4.67

router was not affected by either of the two VC Renamer architectures. The critical
path still lies within the VC Allocation (VA) stage, which is untouched by VC Renamer
(remember, VC Renamer simply changes the mapping of VVCs to PVCs; it does not
interfere with the operation of the arbiters). All the new logic operates within
the slack of the crossbar traversal and link-traversal/buffer-write stages. It is evident
that overall the MB implementation costs are negligent while the LLB implementation
costs are higher in order to ensure better performance for upgradeability scenarios.

6.2.4 Credit Mechanism

As mentioned at the end of Section 3.1, VC Renamer employs a round-robin credit
dispatch mechanism for the VVCs mapped to a particular PVC. This mechanism sends
credits to each of the VVCs on a cycle-by-cycle basis. Figure 6.17 analyzes the impact of
this mechanism on average network latency, as compared to an ideal credit mechanism
that dispatches credits to all VVCs simultaneously and only a VVC that could make
use of the credits actually uses them. It can be seen that the lightweight round-

Table 6.2: Hardware synthesis results: VC Renamer Area and Power Savings over a
generic NoC router implementation with an equal number of VCs and equal number of
PVC Slots

% Area Overhead % Power Overhead
of VVCs 4 6 8 4 6 8
Mask-Based 75.69 237.82 411.63 8.75 104.20 296.52

Linked-List-Based 66.53 219.14 384.02 6.40 99.58 299.23

65

6. SIMULATIONS - RESULTS ANALYSIS

2 3 4
0

5

10

15
A

re
a

O
ve

rh
ea

d
(%

)

of VVCs per PVC

Mask−Based
Linked−List−Based

Figure 6.15: Hardware Synthesis: VC Renamer implementations area overhead compared
to a generic NoC router

2 3 4
0

5

10

15

P
ow

er
 O

ve
rh

ea
d

(%
)

of VVCs per PVC

Mask−Based
Linked−List−Based

Figure 6.16: Hardware Synthesis: VC Renamer implementations power overhead com-
pared to a generic NoC router

robin mechanism has negligible impact of 0.7% on performance when 2 VVCs are
mapped to each PVC. For 3 VVCs/PVC, the latency increases by 2.7%, and for 4
VVCs/PVC it increases by 6.9%. Note, however, that at 2 VVCs/PVC, the number of
supported VVCs already doubles. Hence, the credit mechanism has almost no impact
on performance with this configuration.

66

6.2 Results Analysis

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5Average
0.95

1

1.05

1.1

1.15

N
or

m
al

iz
ed

 A
v.

 N
et

w
or

k
La

te
nc

y

Injection Rate (flits/node/cycle)

2 VVCs per PVC
3 VVCs per PVC
4 VVCs per PVC

Figure 6.17: Comparison of average network latency achieved using the proposed round-
robin (cycle-by-cycle) credit mechanism, as compared to an ideal mechanism that dis-
tributes credits simultaneously to all VVCs mapped to a particular PVC. The impact of
the mechanism is assessed as the number of VVCs mapped to a PVC increases from 2 to
4. All results are normalized to the setup with an ideal credit mechanism.

67

6. SIMULATIONS - RESULTS ANALYSIS

68

7

Future Work - Conclusions

7.1 Future Work

It’s evident from the results in Chapter 6, the premise of VC Renamer offers a valid,
reliable and effective solution when: (1) A VC buffer/channel malfunction occurs and
system functionality must be retained (2) A new routing algorithm, and/or new cache
coherence protocol appears which requires a different number of VCs than the NoC
network supports. We’ve shown that our mechanism works and our results are quite
promising. We are now in the process of incorporating new notions which will extend
its capabilities. Our near future plans feature three such possible directions: the in-
corporation of a mechanism to handle dynamic faults within the Network, to devise a
mechanism in-order for one VVC to be able to be mapped on more than one PVCs and
an exploration of the performance of VC Renamer using a variety of routing algorithms.

7.1.1 Handling Dynamic Faults

In section 6.2.1 of chapter 6 the faults we incorporated within the network in the fault-
tolerance simulation scenarios were statically allocated at run-time so there was no
need to worry about corrupted packets being routed within the network or even having
packets lost never reaching their destination. Our current research plans are to devise
a mechanism where VC Renamer can handle the presence of dynamic VC faults. We
define a dynamic VC fault as the inability to use a VC within a router input port,
because of faults to components that affect the VC functionality. When a dynamic
fault occurs, the faulty virtual channel becomes inoperable and all the flits which were
stored are rendered inaccessible. In order to be able to salvage these missing packets
we devised a mechanism where the flits stored within a downstream router are present
in it’s upstream neighbour as well. So we basically maintain a copy of the flits in the
neighboring router. When a fault occurs we notify the neighbouring router to resend
lost flits and enable VC Renamer.

69

7. FUTURE WORK - CONCLUSIONS

Router n (East Port)

T B B B H H

FT Head Pointer

Head Pointer d Po

Router n+1 (West Port)

B B H H

FT Head Pointer

Head Pointer ointe

Figure 7.1: Generic NoC Architecture augmented to handle dynamic faults

Architecture

To accomplish this we require an extra head-pointer for every virtual channel, the
fault-tolerant head pointer (FT head pointer) as shown in Figure 7.1. When router
n (upstream router) sends a flit, it advances a second head-pointer (the actual head
pointer), while another head-pointer (the fault-tolerance head pointer) remains in the
same position. The flit arrives and is stored at router n+1 (downstream router). When
router n+1 sends the flit towards router n+2, an OK message is sent from router
n+1, back to router n in order to advance the fault-tolerance head pointer. If an
error occurs within a virtual channel the faulty port sends a NOT OK message to
its neighbouring port and enables the VC Renamer mechanism. Upon receiving that
message the neighbouring port simply copies the value of the fault tolerance head
pointer and overwrites the normal head pointer value. In order to prevent flits from
getting overwritten before we are certain that they have departed from the downstream
router, credit ON-OFF signals are sent based on the empty-free-slot availability using
the fault-tolerance head pointer.

In order for the mechanism to work both the Linked-List-Based and Mask-Based
implementations of VC Renamer need to be slightly modified to be able to handle
dynamic faults. In order to handle dynamic faults the Mask-Based implementation
requires an extra VVC Mask per VVC, the fault tolerant masks (FT Masks) as shown
in figure 7.2. The basic algorithms we presented in 4 will also have to be slightly
modified. More specifically when a flit arrives we update have to both the normal and
FT VVC masks. When a flit departs the normal procedure is used where the bit on
the normal VVC Mask is reset. In this implementation we send out credits based on
the FT VVC Masks. When an OK message is received all that needs to be done is
reset the rightmost bit of the FT VVC Mask, since the mask is being built from right
to left. When a NOT OK message is received the normal VVC Mask is overwritten
with the FT VVC Mask. Since the Generic NoC Architecture requires an extra set
of head pointers, in the Linked-List-Based implementation we require an extra set of
fault-tolerant entries in the Front-of-VC List, to store the fault-tolerant head pointer
value as shown in figure 7.3. The basic algorithms we presented in 5 will also have to
be slightly modified. During flit arrival no change is required, the normal value of the

70

7.1 Future Work

1T 2b 2b 1B 1B 2h 1H

PVC

ID

PVC

ID

Mapping Table

VVC ID PVC ID

0 0

1 0

2 1

VVC Masks

VVC ID k-bit mask
0 01001101
1 00110010
2 00000000

One Router Input Port

VC Renamer – Mask-Based Mechanism

VVC

ID

VVC Mask

Head/Tail

Pointer

Subtractor

Sign

Tail Pointer Head Pointer

Head of FIFO Buffer
PVC0

PVC1 To

Crossbar

1H,1B,1T : Head, Body, Tail of VVC0

2h, 2b, 2t : Head, Body, Tail of VVC1

FT VVC Masks

VVC ID k-bit mask
0 01001101
1 00110010
2 00000000

Figure 7.2: VC Renamer Mask-Based Architecture augmented to handle dynamic faults

Front-of-VC List is updated with a flit position from the Free-Slot FIFO List. Now
when a flit departs we still use the Front-of-VC List entry value to index into the PVC
Pointer and update Front-of-VC List Normal Entry but we do not push the previous
position of the Front-of-VC List back to the Free-Slot-FIFO. When an OK message
is received we use the Front-of-VC List FT value to index into the PVC Pointer and
update Front-of-VC List FT entry and then push the previous FT value of the Front-
of-VC List onto Free-Slot FIFO List. When a NOT OK message is received all that
needs to be done is overwrite the Front-of-VC List Normal Value with the FT value.

Preliminary Results

To evaluate our mechanism we implemented three different architectures within our
cycle-accurate NoC simulator. We implemented the mechanism to handle dynamic
faults in a generic NoC router in order to evaluate it’s performance in a fault-free
network. Afterwards using the augmented network we implemented our two different
architectures which were shown in figures 7.2 and 7.3 on-top of the mechanism to ex-
amine it’s effects on latency and throughput in the presence of dynamic faults. All
three mechanisms have been implemented but we are still in the beginning stages of
our simulations. A preliminary scenario is presented here in order to evaluate is full-
potential. Our scenario assumes wormhole switching, 4-stage pipelined routers, and

71

7. FUTURE WORK - CONCLUSIONS

1T 2b 2b 1B 1B 2h 1H

PVC

ID

PVC

ID

One Router Input Port

VC Renamer – Linked-List-Based
Dynamic Faults Mechanism

VVC

ID

From Free-Slot
FIFO List

From Front-of-
VC List

Head of FIFO Buffer
PVC0

PVC1
To

Crossbar

Mapping Table

VVC ID PVC ID

0 0

1 0

2 1

Back-of-VC List

VVC ID Position

0 6

1 5

2 -

- - 5 6 3 4 2

1

0

PVC ID 7 6 5 4 3 2 1 0

PVC Pointer List

7

7 6 5 4 3 2 1 01

0

PVC ID 7 6 5 4 3 2 1 0

Free-Slot FIFO List

FIFO Head

1H,1B,1T : Head, Body, Tail of VVC0
2h, 2b, 2t : Head, Body, Tail of VVC1

Front-of-VC List

VVC ID Normal

0 0

1 1

2 -

F.T.

0

1

-

Figure 7.3: VC Renamer Linked-List-Based Architecture augmented to handle dynamic
faults

deterministic XY routing. Each router consists of five physical ports and the generic
router architecture features 4 10-slot virtual channels. In the VC Renamer implemen-
tations when a fault is materialized one of the four VVCs breaks down and is mapped
onto another PVC. We run our simulation for 1,000,000 clock cycles using Synthetic
Uniform Random traffic patterns in an 8 × 8 2D MESH network. The latency and
throughput graphs appear in figures 7.4 and 7.5 respectively. From the said figures the
blue line represents the generic NoC router architecture without any prior modifica-
tions. The red line represents the augmented generic NoC router architecture with no
faults present in the network which uses the extra fault tolerant head pointer to make
sure that in case an error occurs within a VC buffer no flits will be lost. The green line
represents the Linked-List-Based mechanism augmented to handle dynamic faults in a
network with 5% dynamic random faults. Finally the yellow line represents the Mask-
Based mechanism augmented to handle dynamic faults in a network with 5% dynamic
random faults. As it can be seen from the said figures the Generic router architecture
saturates at 0.35 flits/node/per cycle. The FT mechanism without any faults at 0.30
flits/node/per cycle, the Linked-List-Based at 0.27 flits/node/per cycle and the Mask-
Based at 0.20 flits/node/per cycle. Its evident that even in a fault-free environment
our mechanism suffers with an additional 6.87% latency below saturation point and a

72

7.1 Future Work

0 0.1 0.2 0.3 0.4
30

40

50

60

70

80

90

100

Injection Rate (flits/node/cycle)

A
ve

ra
ge

 N
et

w
or

k
La

te
nc

y
(c

yc
le

s)

Generic
Generic FT Mechanism
Linked−List−Based DF 5%
Mask−Based DF 5%

Figure 7.4: Dynamic Faults Scenario - Latency: Comparison of a Generic NoC, a Generic
NoC augmented to handle dynamic faults and the VC Renamer mechanism under 5%
dynamic faults

0 0.1 0.2 0.3 0.4
0

20

40

60

80

100

Injection Rate (flits/node/cycle)

T
hr

ou
gh

tp
ut

Generic
Generic FT Mechanism
Linked−List−Based DF 5%
Mask−Based DF 5%

Figure 7.5: Dynamic Faults Scenario - Throughput: Comparison of a Generic NoC, a
Generic NoC augmented to handle dynamic faults and the VC Renamer mechanism under
5% dynamic faults

5.38% drop in throughput overall. The Linked-List-Based implementation suffers with
an additional 7.00% latency below saturation point and a 5.95% drop in throughput
overall. Results are almost identical to the fault-free environment even at 5% faulty
VC. It appears that the Mask-Based implementation is not resilient to handle dynamic
faults and suffers the most with an additional 15.92% latency below saturation point
and a 16.27% drop in throughput overall. It’s evident that by sending the credits to
the downstream routers using the FT VVC Masks extremely limits the performance of
the network. We are still at the preliminary stages of our evaluation and there might
be NoC configurations which will shed a different light in our innovative mechanism.
The architecture presented might also be altered if we devise a better methodology to
handle dynamic faults.

73

7. FUTURE WORK - CONCLUSIONS

7.1.2 Mapping one VVC across multiple PVCs

As it was seen in Chapter 3, the VC Renamer mechanism implements a virtual VC
which is directly mapped onto one physical VC. It is our belief that if we can map one
VVC onto more than one PVCs in order to utilize buffer slots which aren’t being used
by the other VVCs will minimize the performance loss of the Mask-Based mechanism
and even show the Linked-List-Based mechanism to be superior to the generic NoC. To
be able to accomplish that, a control logic would need to be implemented which will
keep track of incoming traffic and record the utilizations of the VVCs in each router
port. These traffic measurements, which will be taken using well defined equations, will
be used to decide if a VVC can ’borrow’ slots from another PVC. Let’s say we have a
router with 2 8-slot physical virtual channels with one VVC mapped on each. VVC0
is used for data transfers and VVC1 for control messages. The control logic measuring
traffic utilizations shows that the VVC1 is always half-empty, while VVC0 is almost
always full. Since that is the case it could send a signal to map VVC0 on PVC1 and
help the flow-control mechanism of the network.

7.1.3 Exploration of the performance of VC Renamer using various
routing algorithms

Every simulation scenario we performed used the XY routing algorithm. This was
to stress out the fact that when using deterministic routing algorithms a single fault
within the NoC would render the network inoperable. The VC Renamer mechanism
was able to keep the network from completely failing with a slight loss in performance
even when deterministic routing algorithms were used. The XY routing algorithm is
simple and effective but it lacks the adaptation which can be found in other routing
algorithms, which can utilize traffic measurements and information from neighbouring
routers. It is in our future plans to examine the performance of VC Renamer using a
variety of routing algorithms both deterministic and adaptive.

7.2 Conclusions

Virtual channels are quintessential constructs in the correct operation of both the NoC
routing algorithm and the CMP’s cache coherence protocol. This thesis introduces the
notion of VC Renaming, which enables the further virtualization of existing VC
buffers, in order to decouple the number of supported VCs in the system from the
number of physically present VC buffers. The goals are (a) to enable the system to
tolerate faulty VCs without reliance on expensive spare buffers, and (b) to accommo-
date routing algorithms and/or cache coherence protocols with varying VC require-
ments. Two different hardware implementations of the VC Renamer architecture are
presented, which target different objectives (fault-tolerance vs. upgradeability). Both
designs incur minimal hardware overhead and exhibit excellent performance without
impacting the router’s critical path. These results are very promising and demonstrate
the viability of VC Renaming in future CMPs.

74

Appendix A

POP Net - A high-level
cycle-accurate NoC Simulator

POP net is a cycle-accurate interconnection network simulator developed by Li-Shiuan
Peh of Princeton University in 2000-2001. The simulator makes extensive use of the
Standard Template Library (STL) which is a C++ library of container classes, algo-
rithms, and iterators providing many basic algorithms and data structures useful in
creating a network simulator. What makes it possible are the STL library containers
which are highly parametrizable and can be used as templates for the various classes
which will build up the NoC.

The basic router structure of a router in Popnet is comprised of two components
the front end (input template) and the back-end (output template). The front end
component contains the virtual channels, a table which records the current pipeline
stage of each VC as well tables to store the result of the routing decision for each VC.
The back end component contains the output buffers and counters which hold the state
of the credits of the routers neighbors.

A.1 Front-end Router Component

As we have mentioned above the front-end component of Popnet contains the basic
variables needed for the virtual channels. This is accomplished using STL vectors and
pairs.

• input [port] [vc] [vc size] : a 3d vector container which contains the incoming
flits

• states [port] [vc] : holds the current stage of the router pipeline that each VC
is in. The stages which the VC can be in are:

INIT : Initial Stage : Awaiting for flits to arrive

ROUTING : Routing Stage : Routing must be performed on the header flit

75

A. POP NET - A HIGH-LEVEL CYCLE-ACCURATE NOC
SIMULATOR

VC AB : Virtual Channel Arbitration : VC arbitration must be performed
on the header flit

SW AB : Switch Arbitration Stage : Switch arbitration must be performed
on each flit.

SW TR : Switch Traversal Stage : Switch traversal must be performed on
each flit.

• routing [port] [vc] [direction-vc pairs] : a 3d vector which after the routing
is performed contains a series of pairs which hold the direction which the flits of
a packet must follow as well as the number of virtual channels of the neighboring
router for that direction. (direction-vc number)

• crouting [port] [vc] [direction-vc pair] : a 2d vector which after the vc
arbitration is performed chooses one VC from the VC pairs of the routing vector,
if any are available. This denotes the direction and the VC the flits of that
particular packet will follow in the switch arbitration and switch traversal stages.

A.2 Back-end Router Component

The back-end component of the router functionality contains the output buffers and
the variables which hold the credit state for each of the routers neighbors. Just as with
the front-end component of the router this is accomplished using STL vectors.

• counter [port][neigbouring vc] : contains a counter with the available credits
of the neighboring port for each of its VCs. Each counter is initialized to the buffer
size of each VC. When a flit departs towards that direction for a particular VC
the appropriate counter is decreased. Each time a flit from the downstream router
departs it sends a message to the router informing it to increase the according
counter by one.

• usage [port][vc] : contains the state of the neigbouring VCs. This can be either
FREE or USED. If the VC is in the FREE state, the particular VC is a candidate
for the VC arbitration stage. When a header flit arrives in the neigbouring VC,
it sends a message and the usage vector changes into the USED state where it
cannot participate to the VC arbitration stage. When a tail flit departs from the
neigbouring VC, it sends a message and the usage vector changes into the FREE
state

• outbuffers[output port][outbuffer size]: a 2d vector container within which
the outgoing flits are stored before they traverse the link to reach the downstream
router.

• localcounter[output port]: counter which holds the number of the available
positions in the output buffers.

76

A.3 Router Pipeline

A.3 Router Pipeline

The router pipeline in Popnet contains 5 stages. These are the routing decision, virtual
channel arbitration, switch arbitration, flit output buffer stage and flit traversal stages.
In a router cycle these stages are performed for each router before advancing to the
next cycle. The 2d vector states[port][vc] from the front-end component of the router
dictates if any action is going to occur during that stage. For example if the virtual
channel 2 of the north port of router 0,0 is in the VC AB stage then during the next
routing cycle VC arbitration will commence for that particular VC. To ensure that
when the VC arbitration stage ends and the state of that particular VC is updated,
the switch arbitration doesnt execute for that particular VC, Popnet runs the router
stages in reverse order.

• Routing Decision Stage : During the routing decision stage if a particular VC
is in the ROUTING state, routing commences. The appropriate routing function
is called, based on the routing algorithm specified from the command line options,
and the routing function returns a set of pairs of all the VCs of the downstream
router where the packet should follow (port, vc number). When routing completes
the state of the VC is updated from ROUTING to VC AB and the routing pairs
are stored inside the routing[port][vc][direction-vc pairs] vector.

• Virtual Channel Arbitration Stage: Virtual Channel arbitration succeeds
the routing decision stage. This is broken down into two distinct stages VA1 and
VA2. In VA1 all the input ports which are in the VC ARB stage request an output
port. So each virtual channel for each port is examined to assert if they are in the
VC AB state. If thats the case the vc selection function is called which uses the
routing[port][vc][direction-vc pairs] vector to examine if any of the downstream
routers VCs are available. This is done using the usage vector. All the VCs which
manage to acquire a neighboring VC are stored within a map container which is
one of the STD librarys features and is basically a sorted associative array of
unique keys and associated data which in our case are the winning VCs which
follow on to the VA2 stage. During the VA2 stage arbitration occurs where only
one VC manages to acquire each output VC. The state of the VC winning the
VA2 stage is updated from VC AB to SW AB and the selected routing port and
output VC are stored within the crouting (chosen routing) vector.

• Switch Arbitration Stage: Switch arbitration is broken down into two stages,
SA1 and SA2. During the first stage of switch arbitration all the ports and
virtual channels of a router are examined and if a VC is in SW AB state the
chosen routing vector is acquired from the previous stage via the crouting vector
and if there are available credits both in the output buffer of the current router
and credits from the downstream routers selected VC the request is stored within
a map container which follows to the SA2 stage. During the SA2 stage only one
output VC is selected and the winning request updates the state of the VC from
SW AB to SW TR to be able to follow to the flit outbuffer stage.

77

A. POP NET - A HIGH-LEVEL CYCLE-ACCURATE NOC
SIMULATOR

• Flit Outbuffer Stage: During the flit outbuffer stage the VCs of each port are
examined to see if they are in the switch traversal state. If that is the case the
flit is removed from the VC and added to the appropriate output buffer. If the
removed flit is at its destination it is consumed by the router and if its the tail flit
the VC is released. Then a CREDIT message is sent to inform the neighboring
router to increase its credit counter by one.

• Flit Traversal Stage: In the flit traversal stage each output buffer (North,
South, East, West) is examined and if its not empty, a flit is removed and sent
to the appropriate downstream router using a WIRE message.

A.4 Message Passing

Data and control signals in Popnet are transmitted using four kinds of messages: EVG,
ROUTER, WIRE and CREDIT messages.

• EVG messages : messages used when a new packet is going to be injected into
the network

• ROUTER messages : messages used to determine the pipeline stage for each
router

• WIRE messages : messages used for routers to receive flits from other routers

• CREDIT messages : messages used for credits

A.5 Command Line Options

Popnet by itself is quite parametrable and thats why it stands out of other similar
simulators. One can specify the various NoC parameters using the following command
line.

Command file to run: ./isim -A 8 -c 2 -V 2 -B 6 -O 2 -P 5 -L 200 -f 4 -H
10 -F 32 -I /home/user/popnet/uniform/500/bench -p 3 -R 0 -S 0

• A 8 : determines the size of the network in each dimension

• c 2 : determines the dimensionality of the network

• B 12 : determines the input buffer size

• 0 2 : determines the output buffer size

• F 4 : determines the flit size

• L 1000 : determines the link length in run

• T 2000 : determines the simulation cycles

78

A.5 Command Line Options

• -l /home/user/popnet/uniform/500/bench : specifies where the trace file is lo-
cated

• R 0 : determines the routing algorithm used (R 0: is YX routing for 2 VCs per
port)

The Popnet trace files follow the format: T sx sy dx dy n: where:

• T : packet injection time

• sx sy : the address of the source router

• dx dy : the address of the destination router

• n : packet size (number of flits)

79

A. POP NET - A HIGH-LEVEL CYCLE-ACCURATE NOC
SIMULATOR

80

Appendix B

VC Renamer - MB Flow
Diagrams

81

B. VC RENAMER - MB FLOW DIAGRAMS

Is VC Renamer enabled

for the port?
Yes No

Store flit in

appropriate PVC
Store flit in VC

Incoming Flit

If it’s a header flit

update the state of

the VC/VVC from

INIT to ROUTING

Update VVC Mask

Figure B.1: Mask-Based Architecture Flow Chart - Incoming Flits: The basic steps of
the VC Renamer Algorithm needed when a flit arrives at an input port.

82

Have all the routing

ports been

examined?

Is VC Renamer

enabled?

No

Yes

Move to the VC

Arbitration phase

Yes
No

Have all the PVCs

been examined?

Have all the VCs

been examined?

Yes
Yes

No

Router Pipeline – Stage 1 : Routing Decision

If VC is in routing state call

the appropriate routing

function which returns all

the port-VC pairs of

downstream router.

No

Does the PVC have

more than one mapped

VVCs?

No

If the mapped VVC is in

routing state call the

appropriate routing function

which returns all the port-

VC pairs of downstream

router.

Yes

Examine the head

pointer of the PVC and

find to which VVC

belongs the pointed flit.

If the mapped VVC is in

routing state call the

appropriate routing function

which returns all the port-

VC pairs of downstream

router.

Figure B.2: Mask-Based Architecture Flow Chart - Router Pipeline - Stage 1: Rout-
ing Decision: The basic steps of the VC Renamer Algorithm needed during the Routing
Computation Stage.

83

B. VC RENAMER - MB FLOW DIAGRAMS

Have all the routing

ports been

examined?

Is VC Renamer

enabled?

No Yes

Move to the VC

Arbitration – VA2

phase

Yes

No

Have all the PVCs

been examined?

Have all the VCs

been examined?

Yes
Yes

No

Router Pipeline – Stage 2 : Virtual Channel Arbitration

If VC is in VC Arbitration state call

the vc_selection function which uses

the port-vc pairs from the routing

stage and returns one available port-

VC pair of the downstream router

which is stored in a table used in

VA2 phase.

No

Does the PVC have

more than one mapped

VVCs?

No

If the mapped VVC is in VC Arbitration

state call the vc_selection function which

uses the port-vc pairs from the routing

stage and returns one available port-VC

pair of the downstream router which is

stored in a table used in VA2 phase.

Yes

Examine the head

pointer of the PVC and

find to which VVC

belongs the pointed flit.

If the mapped VVC is in VC

Arbitration state call the vc_selection

function which uses the port-vc pairs

from the routing stage and returns

one available port-VC pair of the

downstream router which is stored in

a table used in VA2 phase.

VC Arbitration - VA1 Stage

Figure B.3: Mask-Based Architecture Flow Chart - Router Pipeline - Stage 2: VC
Arbitration - VA1: the basic steps of the VC Renamer Algorithm needed during the VA1
Stage.

84

Router Pipeline – Stage 2 : Virtual Channel Arbitration

VC Arbitration – VA2 Stage

Update VC/VVC state from VC_AB

to SW_AB

Assign output VC as used

Update Chosen Routing vector with

the appropriate Port-VC pair

Have all the routing

ports been examined?

Have all the VCs/VVCs

been examined?

No

Did the VC/VVC

managed to acquire a

VC in the VA1 stage?

No

Move to the SW

Arbitration Phase

Yes

Yes

Is the output VC

available?

Yes

No

Yes

Figure B.4: Mask-Based Architecture Flow Chart - Router Pipeline - Stage 2: VC
Arbitration - VA2: the basic steps of the VC Renamer Algorithm needed during the VA2
Stage.

85

B. VC RENAMER - MB FLOW DIAGRAMS

SW Arbitration – SA1 Stage

Have all the routing

ports been examined?

Is VC Renamer enabled

for the port?

No

Move to the SW

Arbitration - SA 2

Stage

Yes

No No

If the VC is in SW Arbitration state

acquire the chosen routing vector

from the VC AB stage. If there are

available credits on the

downstream router’s VC

store the VC in a table used in the

SA2 phase.

Is the VVC mapped onto a PVC

which has more than one VVCs

mapped?

No

If the VVC is in SW Arbitration

state acquire the chosen routing

vector from the VC AB stage. If

there are available credits on the

downstream router’s VC

store the VC in a table used in

the SA2 phase.

Have all the VVCs

been examined?

Have all the VCs

been examined?

No

Yes

Yes

Yes

Does the PVC head pointer

point to this VVC’s flit?

Yes

If the VVC is in SW Arbitration state

acquire the chosen routing vector from

the VC AB stage. If there are available

credits on the downstream router’s VC

and the head-mask comparison passes

store the VC in a table used in the SA2

phase.

Yes

Router Pipeline – Stage 3 : Switch Arbitration

Figure B.5: Mask-Based Architecture Flow Chart - Router Pipeline - Stage 3: Switch
Arbitration - SA1: the basic steps of the VC Renamer Algorithm needed during the SA1
Stage.

86

Router Pipeline – Stage 3 : Switch Arbitration

SW Arbitration – SA2 Stage

Select a random VC/VVC which

managed to win the SA1 stage for

the output port.

Update VC/VVC state from SW_AB

to SW_TR

Have all the routing

ports been examined?

Move to the Flit

Outbuffer Phase

Yes

No

Figure B.6: Mask-Based Architecture Flow Chart - Router Pipeline - Stage 3: Switch
Arbitration - SA2: the basic steps of the VC Renamer Algorithm needed during the SA2
Stage.

87

B. VC RENAMER - MB FLOW DIAGRAMS

Flit outbuffer Stage

Have all the router ports

been examined?

Is VC Renamer enabled

for the port?

No

Move to the Flit

Traversal stage

Yes

No No

If the VC is in SW Traversal state

remove a flit from the VC and add it

to the appropriate output buffer.

Is the VVC mapped onto a PVC

which has more than one VVCs

mapped?

No

If the VVC is in SW Traversal

state remove a flit from the

appropriate PVC and add it to

the correct output buffer.

Have all the VVCs

been examined?

Have all the VCs

been examined?

No

Yes

Yes

Yes

Does the PVC head pointer

point to this VVC’s flit?

Yes

If the VVC is in SW Traversal state and

the head-mask comparison passes

remove a flit from the appropriate PVC

and add it to the correct output buffer.

Yes

Router Pipeline – Stage 4 : Flit Outbuffer

Figure B.7: Mask-Based Architecture Flow Chart - Router Pipeline - Stage 4: Flit
Outbuffer: the basic steps of the VC Renamer Algorithm needed when a flit is selected to
depart from an input port

88

Router Pipeline – Stage 5 : Flit Traversal

Remove a flit from the output buffer

and send it to the downstream router

inside a WIRE message

Have all the router ports

been examined?

Is the output buffer

empty?

No

No

End of Router

Pipeline Cycle

Yes

Yes

Figure B.8: Mask-Based Architecture Flow Chart - Router Pipeline - Stage 5: Flit
Traversal: the basic steps of the VC Renamer Algorithm needed when a flit travels towards
the downstream router

89

B. VC RENAMER - MB FLOW DIAGRAMS

Have all the routing

ports been

examined?

Is VC Renamer

enabled?

No

Yes

Finish Sending

Out Credits

Yes

No

Have all the PVCs

been examined?

Have all the VCs

been examined?

Yes

Yes

No

No

Does the PVC have

more than one mapped

VVCs?

NoYes

Credits Mechanism

Send ON Credit

Signal

Does the VC have

more than 4 free buffer

slots available?

Send OFF Credit

Signal

Yes No

Does the VC have

more than 4 free buffer

slots available?

Send ON Credit

Signal

Send OFF Credit

Signal

Yes No

Have all the mapped

VVCs been examined?

Yes

Is PVC round robin

credit counter the same

as the current VVCSend OFF Credit

Signal

No

Does the PVC have more

than 5 free consecutive

buffer slots available?

Send ON Credit

Signal

Yes

Has the PVC tail pointer

been stuck for more than 30

cycles and is there at least

one buffer slot available?

Send ON Credit

Signal

Send OFF Credit

Signal

Yes

No

No

Figure B.9: Mask-Based Architecture Flow Chart - Credit Mechanism: the basic steps
of the VC Renamer Algorithm needed when sending out ON-OFF credit messages

90

Router Pipeline – VC Renamer – Router Pipeline Tasks

Have all the router

ports been

examined?

Is VC Renamer

enabled on this

port?

No

Yes

End Router

Pipeline

Yes

No

Have all the PVCs been

examined?

Does the PVC have

more than one mapped

VVCs?

Yes

No

No

Is the PVC empty?

Does the head pointer

point to an empty

position?

Does the tail pointer

point to an occupied

position?

Reset head pointer

Reset tail pointer

Reset stuck head pointer counter

Reset stuck tail pointer counter

Yes

No

Advance head pointer

Advance tail pointer

No

Yes

Yes

No

Does the VVC where

the head pointer points

pass the head-mask

comparison?

Advance head pointer

No

If the head pointer value did not change

during this cycle increase stuck head

pointer counter by one

If the tail pointer value did not change

during this cycle increase stuck tail

pointer counter by one

Yes

Yes

Has the head pointer

been stuck for more

than 120 cycles?

Advance head pointer

Reset stuck head pointer counter

Yes

End VC Renamer

Tasks

No

Figure B.10: Mask-Based Architecture Flow Chart - End of router pipeline tasks: the
basic steps of the VC Renamer Algorithm needed when the router pipeline ends

91

B. VC RENAMER - MB FLOW DIAGRAMS

92

Appendix C

VC Renamer - LLB Flow
Diagrams

93

C. VC RENAMER - LLB FLOW DIAGRAMS

Is VC Renamer enabled

for the port? No

Store flit in

appropriate PVC

Store flit in VC

Incoming Flit

If it’s a header flit

update the state of

the VC/VVC from

INIT to ROUTING

Get empty slot

from Free-Slot

FIFO List

Is VVC Empty?

Update Front-of-VC List

with flit

position from Free-Slot

FIFO List

Yes

Use Back-of-VC List to

index into the PVC Pointer

List and extend the linked-

list

No

Update Back-of-VC

List with new flit

position

Figure C.1: Linked-List-Based Architecture Flow Chart - Incoming Flits: The basic steps
of the VC Renamer Algorithm needed when a flit arrives at an input port.

94

Have all the routing

ports been

examined?

Is VC Renamer

enabled?

No

Yes

Move to the VC

Arbitration phase

Yes
No

Have all the VVCs

been examined?

Have all the VCs

been examined?

Yes
Yes

No

Router Pipeline – Stage 1 : Routing Decision

If VC is in routing state call

the appropriate routing

function which returns all

the port-VC pairs of

downstream router.

No

If the mapped VVC is in

routing state call the

appropriate routing function

which returns all the port-

VC pairs of downstream

router.

Figure C.2: Linked-List-Based Architecture Flow Chart - Router Pipeline - Stage 1:
Routing Decision: The basic steps of the VC Renamer Algorithm needed during the Rout-
ing Computation Stage.

95

C. VC RENAMER - LLB FLOW DIAGRAMS

Have all the routing

ports been

examined?

Is VC Renamer

enabled?

No

Move to the VC

Arbitration – VA2

phase

Yes
No

Have all the VVCs

been examined?

Have all the VCs

been examined?

Yes
Yes

No

Router Pipeline – Stage 2 : Virtual Channel Arbitration

If VC is in VC Arbitration state call

the vc_selection function which uses

the port-vc pairs from the routing

stage and returns one available port-

VC pair of the downstream router

which is stored in a table used in

VA2 phase.

No

VC Arbitration - VA1 Stage

If VVC is in VC Arbitration state call

the vc_selection function which uses

the port-vc pairs from the routing

stage and returns one available port-

VC pair of the downstream router

which is stored in a table used in

VA2 phase.

Yes

Figure C.3: Linked-List-Based Architecture Flow Chart - Router Pipeline - Stage 2: VC
Arbitration - VA1: the basic steps of the VC Renamer Algorithm needed during the VA1
Stage.

96

Router Pipeline – Stage 2 : Virtual Channel Arbitration

VC Arbitration – VA2 Stage

Update VC/VVC state from VC_AB

to SW_AB

Assign output VC as used

Update Chosen Routing vector with

the appropriate Port-VC pair

Have all the routing

ports been examined?

Have all the VCs/VVCs

been examined?

No

Did the VC/VVC

managed to acquire a

VC in the VA1 stage?

No

Move to the SW

Arbitration Phase

Yes

Yes

Is the output VC

available?

Yes

No

Yes

Figure C.4: Linked-List-Based Architecture Flow Chart - Router Pipeline - Stage 2: VC
Arbitration - VA2: the basic steps of the VC Renamer Algorithm needed during the VA2
Stage.

97

C. VC RENAMER - LLB FLOW DIAGRAMS

SW Arbitration – SA1 Stage

Have all the routing

ports been examined?

Is VC Renamer enabled

for the port?

No

Move to the SW

Arbitration - SA 2

Stage

Yes

No No

If the VC is in SW Arbitration state

acquire the chosen routing vector

from the VC AB stage. If there are

available credits on the

downstream router’s VC

store the VC in a table used in the

SA2 phase.

If the VVC is in SW Arbitration state

acquire the chosen routing vector

from the VC AB stage. If there are

available credits on the downstream

router’s VC

store the VC in a table used in the

SA2 phase.

Have all the VVCs

been examined?
Have all the VCs

been examined?

NoYes

Yes Yes

Router Pipeline – Stage 3 : Switch Arbitration

Figure C.5: Linked-List-Based Architecture Flow Chart - Router Pipeline - Stage 3:
Switch Arbitration - SA1: the basic steps of the VC Renamer Algorithm needed during
the SA1 Stage.

98

Router Pipeline – Stage 3 : Switch Arbitration

SW Arbitration – SA2 Stage

Select a random VC/VVC which

managed to win the SA1 stage for

the output port.

Update VC/VVC state from SW_AB

to SW_TR

Have all the routing

ports been examined?

Move to the Flit

Outbuffer Phase

Yes

No

Figure C.6: Linked-List-Based Architecture Flow Chart - Router Pipeline - Stage 3:
Switch Arbitration - SA2: the basic steps of the VC Renamer Algorithm needed during
the SA2 Stage.

99

C. VC RENAMER - LLB FLOW DIAGRAMS

Flit outbuffer Stage

Have all the router ports

been examined?

Is VC Renamer enabled

for the port?

No Move to the Flit

Traversal stage

Yes

No

No

If the VC is in SW Traversal

state remove a flit from the VC

and add it to the appropriate

output buffer.

If the VVC is in SW Traversal

state remove a flit from the

appropriate PVC and add it to

the correct output buffer.

Have all the VVCs

been examined?

Have all the VCs

been examined?

NoYes

Yes Yes

Router Pipeline – Stage 4 : Flit Outbuffer

Push Flit Position into the Free-

Slot FIFO List

Is (flit = tail flit)?

Invalidate Front-of-VC List

and Back-of-VC List entries

Use the Head Pointer value to

index into the PVC Pointer List

and update Front-of-VC List

with acquired value

Yes No

Figure C.7: Linked-List-Based Architecture Flow Chart - Router Pipeline - Stage 4: Flit
Outbuffer: the basic steps of the VC Renamer Algorithm needed when a flit is selected to
depart from an input port

100

Router Pipeline – Stage 5 : Flit Traversal

Remove a flit from the output buffer

and send it to the downstream router

inside a WIRE message

Have all the router ports

been examined?

Is the output buffer

empty?

No

No

End of Router

Pipeline Cycle

Yes

Yes

Figure C.8: Linked-List-Based Architecture Flow Chart - Router Pipeline - Stage 5: Flit
Traversal: the basic steps of the VC Renamer Algorithm needed when a flit travels towards
the downstream router

101

C. VC RENAMER - LLB FLOW DIAGRAMS

Have all the routing

ports been

examined?

Is VC Renamer

enabled?

No

Yes

Finish Sending

Out Credits

Yes

No

Have all the PVCs

been examined?

Have all the VCs

been examined?

Yes

Yes

No

No

Does the PVC have

more than one mapped

VVCs?

NoYes

Credits Mechanism

Send ON Credit

Signal

Does the VC have

more than 4 free buffer

slots available?

Send OFF Credit

Signal

Yes No

Does the PVC have

more than 4 free buffer

slots available?

Send ON Credit

Signal

Send OFF Credit

Signal

Yes No

Have all the mapped

VVCs been examined?

Yes

Is PVC round robin

credit counter the same

as the current VVC

No

Send OFF Credit

Signal

No

Does the PVC have more

than 4 free buffer slots

available?

Yes

No

Yes

Send ON Credit

Signal

Figure C.9: Linked-List-Based Architecture Flow Chart - Credit Mechanism: the basic
steps of the VC Renamer Algorithm needed when sending out ON-OFF credit messages

102

Bibliography

[1] N.V ijaykrishnan, T. Theocharides, Gregory M. Link and M.J. Irwin. “Networks on Chip (NoC):
Interconnects of Next Generation Systems on Chip”. In Advances In Computers, pages 35 – 89,
2005. vii, 5

[2] L. Benini and G. De Micheli. “Networks on chips: a new SoC paradigm”. Computer, Volume
35, pages 70 – 78, jan 2002. 1

[3] W.J. Dally and B. Towles. “Route packets, not wires: on-chip interconnection networks”. In
Proceedings of the Design, Automation and Test in Europe Conference, pages 684 – 689, 2001. 1

[4] A. Jantsch S. Kumar A. Postula J. Oberg M.Millberg A. Hemani and D. Lindqvist. “Network on
chip: An architecture forbillion transistor era”. In Proceedings of the IEEE NorChip Conference,
2000. 1

[5] P. Guerrier and A. Greiner. “A generic architecture for on-chip packet-switched interconnections”.
In Proceedings of the Design, Automation and Test in Europe Conference, pages 250–256, 2000. 1

[6] S. Yalamanchili J. Duato and Ni Lionel. “Interconnection Networks: An Engineering Approach”.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002. 1

[7] N. Agarwal, Li-Shiuan Peh, and N.K. Jha. “In-Network Snoop Ordering (INSO): Snoopy co-
herence on unordered interconnects”. In Proceedings of the International Symposium on High
Performance Computer Architecture, pages 67 –78, feb. 2009. 1

[8] S. Borkar. “Designing reliable systems from unreliable components: the challenges of transistor
variability and degradation”. IEEE Micro, 2005, 25(6):10–16, nov.-dec. 2005. 2

[9] S.R. Nassif, N. Mehta, and Yu Cao. “A resilience roadmap”. In Proceedings of the Design,
Automation and Test in Europe Conference, pages 1011–1016, march 2010. 2

[10] F.J. Sparacio D.W. Anderson and R.M. Tomasulo. “The IBM System/360 Model 91: Machine
Philosophy and Instruction-Handling”. IBM Journal of Research and Development, 1967. 3

[11] John Hennessy and David Patterson. “Computer Architecture - A Quantitative Approach”. Morgan
Kaufmann, 2003. 3

[12] M. Hayenga, N.E. Jerger, and M. Lipasti. “SCARAB: A single cycle adaptive routing and
bufferless network”. In Proceedings of the International Symposium on Microarchitecture, pages
244–254, dec. 2009. 16

[13] C. Fallin, C. Craik, and O. Mutlu. “CHIPPER: A low-complexity bufferless deflection router”.
In Proceedings of the High Performance Computer Architecture Symposium, pages 144–155, feb.
2011. 16

103

BIBLIOGRAPHY

[14] Thomas and Mutlu Onur Moscibroda. “A case for bufferless routing in on-chip networks”. In
Proceedings of the International Symposium on Computer Architecture, pages 196–207, 2009. 16

[15] G. Michelogiannakis, D. Sanchez, W.J. Dally, and C. Kozyrakis. “Evaluating Bufferless Flow
Control for On-chip Networks”. In Proceedings of the International Symposium on Networks-on-
Chip, pages 9–16, may 2010. 17

[16] M.A. Al Faruque and J. Henkel. “Minimizing Virtual Channel Buffer for Routers in On-chip
Communication Architectures”. In Proceedings of the Design, Automation and Test in Europe
Conference, pages 1238–1243, march 2008. 17

[17] Young Hoon Kang, Taek-Jun Kwon, and J. Draper. “Dynamic packet fragmentation for increased
virtual channel utilization in on-chip routers”. In Proceedings of the International Symposium on
Networks-on-Chip, pages 250–255, may 2009. 17

[18] Keun Sup Shim, Myong Hyon Cho, M. Kinsy, T. Wen, M. Lis, G.E. Suh, and S. Devadas. “Static
virtual channel allocation in oblivious routing. In Proceedings of the International Symposium on
Networks-on-Chip”, pages 38–43, may 2009. 17

[19] Mingche Lai, Zhiying Wang, Lei Gao, Hongyi Lu, and Kui Dai. “A dynamically-allocated virtual
channel architecture with congestion awareness for on-chip routers”. In Proceedings of the Design
Automation Conference, pages 630–633, june 2008. 17, 19

[20] Yi Xu, Bo Zhao, Youtao Zhang, and Jun Yang. “Simple virtual channel allocation for high
throughput and high frequency on-chip routers”. In Proceedings of the International Symposium
on High Performance Computer Architecture, pages 1–11, jan. 2010. 17

[21] R. Dobkin, R. Ginosar, and I. Cidon. “QNoC Asynchronous Router with Dynamic Virtual
Channel Allocation”. In Proceedings of the International Symposium on Networks-on-Chip, page
218, may 2007. 17

[22] C.A. Nicopoulos, Dongkook Park, Jongman Kim, N. Vijaykrishnan, M.S. Yousif, and C.R. Das.
“ViChaR: A Dynamic Virtual Channel Regulator for Network-on-Chip Routers”. In Proceedings
of the International Symposium on Microarchitecture, pages 333–346, dec. 2006. 17, 19

[23] R.S. Ramanujam, V. Soteriou, B. Lin, and Li-Shiuan Peh. “Design of a High-Throughput Dis-
tributed Shared-Buffer NoC Router”. In Proceedings of the International Symposium on Networks-
on-Chip, pages 69–78, may 2010. 17

[24] D. Fick, A. DeOrio, G. Chen, V. Bertacco, D. Sylvester, and D. Blaauw. “A highly resilient
routing algorithm for fault-tolerant NoCs”. In Proceedings of the Design, Automation and Test in
Europe Conference, pages 21–26, april 2009. 18

[25] Zhen Zhang, A. Greiner, and S. Taktak. “A reconfigurable routing algorithm for a fault-tolerant
2D-Mesh Network-on-Chip”. In Proceedings of the Design Automation Conference, pages 441–446,
june 2008. 18

[26] A. Kohler and M. Radetzki. “Fault-tolerant architecture and deflection routing for degradable
NoC switches”. In Proceedings of the International Symposium on Networks-on-Chip, pages 22–31,
may 2009. 18

[27] S. Rodrigo, J. Flich, A. Roca, S. Medardoni, D. Bertozzi, J. Camacho, F. Silla, and J. Duato. “Ad-
dressing Manufacturing Challenges with Cost-Efficient Fault Tolerant Routing”. In Proceedings of
the International Symposium on Networks-on-Chip, pages 25–32, may 2010. 18

104

BIBLIOGRAPHY

[28] Young Hoon Kang, Taek-Jun Kwon, and J. Draper. “Fault-Tolerant Flow Control in On-chip
Networks”. In Proceedings of the International Symposium on Networks-on-Chip, pages 79–86,
may 2010. 18

[29] A. Ejlali, B.M. Al-Hashimi, P. Rosinger, and S.G. Miremadi. “Joint Consideration of Fault-
Tolerance, Energy-Efficiency and Performance in On-Chip Networks”. In Proceedings of the De-
sign, Automation and Test in Europe Conference, pages 1–6, april 2007. 18

[30] R. Marculescu. “Networks-on-chip: the quest for on-chip fault-tolerant communication”. In
Proceedings of the Annual Symposium on VLSI, pages 8–12, feb. 2003. 18

[31] D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, and C.R. Das. “Exploring Fault-Tolerant
Network-on-Chip Architectures”. In Proceedings of the Internationa Conference on Dependable
Systems and Networks, pages 93–104, june 2006. 18

[32] D. Fick, A. DeOrio, Jin Hu, V. Bertacco, D. Blaauw, and D. Sylvester. “Vicis: A reliable network
for unreliable silicon”. In Proceedings of the Design Automation Conference, pages 812–817, july
2009. 18

[33] M. H. Neishaburi and Zeljko Zilic. “Reliability aware NoC router architecture using input channel
buffer sharing”. In Proceedings of the Great Lakes symposium on VLSI, pages 511–516, 2009. 18

[34] Mehdi Modarressi, Hamid Sarbazi-Azad, and Arash Tavakkol. “An efficient dynamically reconfig-
urable on-chip network architecture”. In Proceedings of the Design Automation Conference, pages
166–169, june 2010. 19

[35] Al Faruque, T. Ebi, and J. Henkel. “Configurable links for runtime adaptive on-chip communica-
tion”. In Proceedings of the Design, Automation and Test in Europe Conference, pages 256–261,
april 2009. 19

[36] Y. Tamir and G. L. Frazier. “High-performance multi-queue buffers for VLSI communications
switches”. In Proceedings of the International Symposium on Computer architecture, ISCA ’88,
pages 343–354, 1988. 19

[37] J. Park, B.W. O’Krafka, S. Vassiliadis, and J. Delgado-Frias. “Design and evaluation of a DAMQ
multiprocessor network with self-compacting buffers”. In Proceedings of the International Confer-
ence on Supercomputing, pages 713 –722, nov 1994. 19

[38] N. Ni, M. Pirvu, and L. Bhuyan. “Circular buffered switch design with wormhole routing and
virtual channels”. In Proceedings of the International Conference on Computer Design: VLSI in
Computers and Processors, pages 466 –473, oct 1998. 19

[39] Yungho Choi and Timothy Mark Pinkston. “Evaluation of queue designs for true fully adaptive
routers”. 64, pages 606–616, May 2004. 19

[40] K. Sankaralingam, R. Nagarajan, R. Mcdonald, R. Desikan, S. Drolia, M.S. Govindan, P. Gratz,
D. Gulati, H. Hanson, Changkyu Kim, H. Liu, N. Ranganathan, S. Sethumadhavan, S. Sharif,
P. Shivakumar, S.W. Keckler, and D. Burger. “Distributed Microarchitectural Protocols in the
TRIPS Prototype Processor”. In Proceedings of the International Symposium on Microarchitecture,
pages 480–491, dec. 2006. 57, 61

[41] J.L. Henning. “SPEC CPU2000: measuring CPU performance in the New Millennium”. Com-
puter, 33(7):28–35, jul 2000. 57

[42] A. Agarwal, D. Blaauw, and V. Zolotov. “Statistical timing analysis for intra-die process variations
with spatial correlations”. In Proceedings of the International Conference on Computer Aided
Design, pages 900–907, nov. 2003. 57

105

	List of Figures
	1 Introduction
	2 Networks-on-Chip - Related Work
	2.1 Networks-on-Chip
	2.1.1 Networks-on-Chip Components
	2.1.2 Communication Overview
	2.1.3 Communication Structures
	2.1.4 A Virtual Channel Router

	2.2 Related Work
	2.2.1 NoC Buffers
	2.2.2 Fault Tolerance
	2.2.3 Re-Configurable NoCs

	2.3 POP Net - A high-level cycle-accurate NoC Simulator

	3 VC Renamer High-Level Architecture
	3.1 Mask-Based High-Level Architecture
	3.2 Linked-List Based High-Level Architecture

	4 VC Renamer - Mask-Based Implementation
	4.1 Implementation in High-Level Simulator
	4.2 Implementation in HDL Language

	5 VC Renamer - Linked-List-Based Implementation
	5.1 Implementation in High-Level Simulator
	5.2 Implementation in HDL Language

	6 Simulations - Results Analysis
	6.1 Simulation Platform
	6.2 Results Analysis
	6.2.1 Fault Tolerance Scenarios
	6.2.2 Upgradability Scenarios
	6.2.3 Hardware Cost Comparison
	6.2.4 Credit Mechanism

	7 Future Work - Conclusions
	7.1 Future Work
	7.1.1 Handling Dynamic Faults
	7.1.2 Mapping one VVC across multiple PVCs
	7.1.3 Exploration of the performance of VC Renamer using various routing algorithms

	7.2 Conclusions

	A POP Net - A high-level cycle-accurate NoC Simulator
	A.1 Front-end Router Component
	A.2 Back-end Router Component
	A.3 Router Pipeline
	A.4 Message Passing
	A.5 Command Line Options

	B VC Renamer - MB Flow Diagrams
	C VC Renamer - LLB Flow Diagrams
	Bibliography

